Published online by Cambridge University Press: 12 April 2012
Palms are important components of tropical forest plant communities, due both to their abundance (Henderson et al. 2000) and to the network of interactions with their pollinators and dispersers (Henderson 2002, Zona & Henderson 1989). Forest fragmentation alters the biotic and abiotic conditions of habitats (Ewers & Didham 2006, Fahrig 2003) and it has been observed that Attalea palms increase their densities in disturbed sites (Aguiar & Tabarelli 2009, Andreazzi et al. 2012, Lorenzi et al. 2004). Increased light availability (Salm 2005, Souza & Martins 2004), changes in seed dispersal and predation patterns (Andreazzi et al. 2012, Pimentel & Tabarelli 2004, Wright et al. 2000), and ability to recover after disturbance (Souza & Martins 2004) are among the main mechanisms that have been proposed to explain enhanced palm densities. However, how altered conditions following disturbances influence the dynamics of flower and fruit production is still little understood.