Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T21:51:50.210Z Has data issue: false hasContentIssue false

Influence of soil, topography and substrates on differences in wood decomposition between one-hectare plots in lowland tropical moist forest in Central Amazonia

Published online by Cambridge University Press:  08 October 2009

José Julio de Toledo*
Affiliation:
Coordenação de Pesquisas em Ecologia – CPEC, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. Ephigênio Sales s/n, CP 478, CEP 69011 – 970, Manaus – AM, Brazil
William Ernest Magnusson
Affiliation:
Coordenação de Pesquisas em Ecologia – CPEC, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. Ephigênio Sales s/n, CP 478, CEP 69011 – 970, Manaus – AM, Brazil
Carolina Volkmer de Castilho
Affiliation:
Centro de Pesquisa Agroflorestal de Roraima, Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA, BR 174, km 8, Distrito Industrial, CEP 69301-970, Boa Vista – RR, Brazil
*
1Corresponding author. Email: jjuliotoledo@gmail.com

Abstract:

Understanding how wood decomposition varies spatially at the mesoscale (between 1-ha plots) may improve carbon flux estimates in Amazonian forests. An experiment was carried out to test the influence of soil, slope, above-ground tree live biomass (biomass), fine-litter mass and characteristics of neighbouring trees on the variation of wood decomposition between 1-ha plots in four species of tropical trees that vary in wood density (Manilkara huberi – 0.86 g cm−3, Couratari guianensis – 0.54 g cm−3, Hura crepitans – 0.32 g cm−3 and Parkia pendula – 0.29 g cm−3). A wood sample from each species (30 × 5 × 2.5 cm) was placed in each of 71 plots within 64 km2 of terra firme tropical moist forest in Reserva Florestal Adolpho Ducke. One year later, samples were collected and weighed. The effects of specificity of decomposers was measured by the association of decomposition with the wood density and with the taxonomic group of the nearest tree with dbh ≥30 cm. Wood decomposition was independent of soil (texture and nutrients), slope, biomass and fine-litter mass at the mesoscale, except for C. guianensis, which showed greater decomposition in locations with greater biomass. Decomposition was also independent of wood density and taxonomic group of nearby large trees. In general, none of the variables was useful as a predictor of wood decomposition at the scale larger than 1 ha. Thus, the use of models that include soil and topography to improve estimates of carbon flux are limited because wood decomposition does not follow similar mesoscale patterns to that of biomass and fine-litter decomposition. Also, the results indicate that wood decomposition is more likely to be associated with generalist decomposers than with specialists associated with neighbouring trees.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AGUIAR, N. O., GUALBERTO, T. L. & FRANKLIN, E. 2006. A medium-spatial scale distribution pattern of Pseudoscorpionida (Arachnida) in a gradient of topography (altitude and inclination), soil factors, and litter in a Central Amazonia forest reserve, Brazil. Brazilian Journal of Biology 66:791802.CrossRefGoogle Scholar
BAKER, T. R., PHILLIPS, O. L., MALHI, Y., ALMEIDA, S., ARROYO, L., DI FIORE, A., ERWIN, T., HIGUCHI, N., KILLEEN, T. J., LAURANCE, S. G., LAURANCE, W. F., LEWIS, S. L., MONTEAGUDO, A., NEILL, D. A., VARGAS, P. N., PITMAN, N. C. A., SILVA, J. N. M. & MARTINEZ, R. V. 2004. Increasing biomass in Amazonian forest plots. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359:353365.CrossRefGoogle ScholarPubMed
BEARD, K. H., VOGT, K. A., VOGT, D. J., SCATENA, F. N., COVICH, A. P., SIGURDARDOTTIR, R., SICCAMA, T. G. & CROWL, T. A. 2005. Structural and functional responses of a subtropical forest to 10 years of hurricanes and droughts. Ecological Monographs 75:345361.CrossRefGoogle Scholar
BODDY, L., HYNES, J., BEBBER, D. P. & FRICKER, M. D. 2009. Saprotrophic cord systems: dispersal mechanisms in space and time. Mycoscience 50:919.CrossRefGoogle Scholar
BRAGA-NETO, R., LUIZÃO, R. C. C., MAGNUSSON, W. E., ZUQUIM, G. & CASTILHO, C. V. 2008. Leaf litter fungi in a Central Amazonian forest: the influence of rainfall, soil and topography on the distribution of fruiting bodies. Biodiversity and Conservation 17:27012712.CrossRefGoogle Scholar
CASTILHO, C. V., MAGNUSSON, W. E., ARAÚJO, R. N. O., LUIZÃO, R. C. C., LUIZÃO, F. J., LIMA, A. P. & HIGUCHI, N. 2006. Variation in aboveground tree live biomass in a Central Amazonian forest: effects of soil and topography. Forest Ecology and Management 234:8596.CrossRefGoogle Scholar
CHAMBERS, J. Q., HIGUCHI, N., SCHIMEL, J. P., FERREIRA, L. V. & MELACK, J. M. 2000. Decomposition and carbon cycling of dead trees in tropical forests of the Central Amazon. Oecologia 122:380388.CrossRefGoogle ScholarPubMed
CHAMBERS, J. Q., SCHIMEL, J. P. & NOBRE, A. D. 2001. Respiration from coarse wood litter in Central Amazon forests. Biogeochemistry 52:115131.CrossRefGoogle Scholar
CHAMBERS, J. Q., TRIBUZY, E. S., TOLEDO, L. C., CRISPIM, B. F., HIGUCHI, N., SANTOS, J., ARAÚJO, A. C., KRUIJT, B., NOBRE, A. D. & TRUMBORE, S. E. 2004. Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecological Applications 14:S72S88.CrossRefGoogle Scholar
CHAUVEL, A., LUCAS, Y. & BOULET, R. 1987. On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brazil. Experientia 43:234241.CrossRefGoogle Scholar
CHAVE, J., MULLER-LANDAU, H. C., BAKER, T. R., EASDALE, T. A., TER STEEGE, H. & WEBB, C. O. 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications 16:23562367.CrossRefGoogle ScholarPubMed
COSTA, F. R. C., MAGNUSSON, W. E. & LUIZÃO, R. C. 2005. Mesoscale distribution patterns of Amazonian understorey herbs in relation to topography, soil and watersheds. Journal of Ecology 93:863878.CrossRefGoogle Scholar
COSTA, F. R. C., GUILLAUMET, J. L., LIMA, A. P. & PEREIRA, O. S. 2009. Gradients within gradients: the mesoscale distribution patterns of palms in a Central Amazonian forest. Journal of Vegetation Science 20:6978.CrossRefGoogle Scholar
COX, P. M., HARRIS, P. P., HUNTINGFORD, C., BETTS, R. A., COLLINS, M., JONES, C. D., JUPP, T. E., MARENGO, J. A. & NOBRE, C. A. 2008. Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453:212215.CrossRefGoogle ScholarPubMed
CRAWLEY, M. J. 2007. The R book. John Wiley & Sons, Chichester. 942 pp.CrossRefGoogle Scholar
CREWS, T. E., KITAYAMA, K., FOWNES, J. H., RILEY, R. H., HERBERT, D. A., MUELLER-DOMBOIS, D. & VITOUSEK, P. M. 1995. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76:14071424.CrossRefGoogle Scholar
FEARNSIDE, P. M. 2000. Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climatic Change 46:115158.CrossRefGoogle Scholar
FEARNSIDE, P. M. & LEAL-FILHO, N. 2001. Soil and development in Amazonia. Pp. 291312 in Bierregaard, R. O., Gascon, C., Lovejoy, T. E. & Mesquita, R. C. G. (eds.). Lessons from Amazonia: the ecology and conservation of a fragmented forest. Yale University Press, New Haven.Google Scholar
FERRER, A. & GILBERT, G. S. 2003. Effect of tree host species on fungal community composition in a tropical rain forest in Panama. Diversity and Distributions 9:455468.CrossRefGoogle Scholar
GALE, N. 2000. The relationship between canopy gaps and topography in a western Ecuadorian rain forest. Biotropica 32:653661.CrossRefGoogle Scholar
GENET, J. A., GENET, K. S., BURTON, T. M., MURPHY, P. G. & LUGO, A. E. 2001. Response of termite community and wood decomposition rates to habitat fragmentation in a subtropical dry forest. Tropical Ecology 42:3549.Google Scholar
GILBERT, G. S. & SOUSA, W. P. 2002. Host specialization among wood-decay polypore fungi in a Caribbean mangrove forest. Biotropica 34:396404.Google Scholar
GILBERT, G. S., FERRER, A. & CARRANZA, J. 2002. Polypore fungal diversity and host density in a moist tropical forest. Biodiversity and Conservation 11:947957.CrossRefGoogle Scholar
HARMON, M. E., WHIGHAM, D. F., SEXTON, J. & OLMSTED, I. 1995. Decomposition and mass of woody detritus in the dry tropical forests of the northeastern Yucatan Peninsula, Mexico. Biotropica 27:305316.CrossRefGoogle Scholar
KINUPP, V. F. & MAGNUSSON, W. E. 2005. Spatial patterns in the understory shrub genus Psychotria in Central Amazonia: effects of distance and topography. Journal of Tropical Ecology 21:112.CrossRefGoogle Scholar
LAURANCE, W. F., FEARNSIDE, P. M., LAURANCE, S. G., DELAMONICA, P., LOVEJOY, T. E., RANKIN-DE-MERONA, J., CHAMBERS, J. Q. & GASCON, C. 1999. Relationship between soils and Amazon forest biomass: a landscape-scale study. Forest Ecology and Management 118:127138.CrossRefGoogle Scholar
LINDBLAD, I. 2000. Host specificity of some wood-inhabiting fungi in a tropical forest. Mycologia 92:399405.CrossRefGoogle Scholar
LODGE, D. J. 1997. Factors related to diversity of decomposer fungi in tropical forests. Biodiversity and Conservation 6:681688.CrossRefGoogle Scholar
LODGE, D. J. & LAESSØE, T. 1995. Host preference in Camillea verruculospora. Mycologist 9:152153.CrossRefGoogle Scholar
LUIZÃO, F. J. 1989. Litter production and mineral element input to the forest floor in a Central Amazonian forest. GeoJournal 19:407417.CrossRefGoogle Scholar
LUIZÃO, R. C. C., LUIZÃO, F. J., PAIVA, R. Q., MONTEIRO, T. F., SOUSA, L. S. & KRUIJT, B. 2004. Variation of carbon and nitrogen cycling processes along a topographic gradient in a Central Amazonian forest. Global Change Biology 10:592600.CrossRefGoogle Scholar
LUIZÃO, R. C. C., LUIZÃO, F. J. & PROCTOR, J. 2007. Fine root growth and nutrient release in decomposing leaf litter in three contrasting vegetation types in Central Amazonia. Plant Ecology 192:225236.CrossRefGoogle Scholar
MAGNUSSON, W. E., LIMA, A. P., LUIZÃO, R. C. C., LUIZÃO, F. J., COSTA, F. R. C., CASTILHO, C. V. & KINUPP, V. F. 2005. RAPELD: a modification of the Gentry method for biodiversity surveys in long-term ecological research sites. Biota Neotropica 5:1924.CrossRefGoogle Scholar
MARENGO, J. A., JONES, R., ALVES, L. M. & VALVERDE, M. C. 2009. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. International Journal of Climatology 29: Early View. Available at: http://www3.interscience.wiley.com/cgi-bin/fulltext/122211831/PDFSTARTCrossRefGoogle Scholar
MARTIUS, C. 1997. Decomposition of wood. Pp. 267276 in Junk, W. J. (ed.). The Central Amazon floodplain: ecology of a pulsing system. Springer-Verlag, Berlin.CrossRefGoogle Scholar
MARTIUS, C., HOFER, H., GARCIA, M. V. B., ROMBKE, J., FORSTER, B. & HANAGARTH, W. 2004. Microclimate in agroforestry systems in Central Amazonia: does canopy closure matter to soil organisms? Agroforestry Systems 60:291304.CrossRefGoogle Scholar
MERTENS, J. 2004. The characterization of selected physical and chemical soil properties of the surface soil layer in the “Reserva Ducke”, Manaus, Brazil with emphasis on their spatial distribution. B.Sc. Thesis. Humboldt Universität zu Berlin, Berlin. Available at: http://www.agrar.hu-berlin.de/struktur/institute/pfb/struktur/bodenkstandortl/mitarbeiter/Mertens_BSc_thesis.pdfGoogle Scholar
NASCIMENTO, H. E. M. & LAURANCE, W. F. 2002. Total aboveground biomass in Central Amazonian rainforests: a landscape-scale study. Forest Ecology and Management 168:311321.CrossRefGoogle Scholar
NOGUEIRA, A. 2006. Variação da densidade, área basal e biomassa de lianas em 64 km2 de floresta de terra firme na Amazônia Central. Master Thesis. INPA/UFAM, Manaus. Available at: http://ppbio.inpa.gov.br/Port/public/d/dissertanselmo.pdfGoogle Scholar
NOGUEIRA, E. M., NELSON, B. W. & FEARNSIDE, P. M. 2005. Wood density in dense forest in Central Amazonia, Brazil. Forest Ecology and Management 208:261286.CrossRefGoogle Scholar
OLSON, J. S. 1963. Energy storage and balance of producers and decomposers in ecological systems. Ecology 44:322331.CrossRefGoogle Scholar
PHILLIPS, O. L., MALHI, Y., HIGUCHI, N., LAURANCE, W. F., NUNEZ, P. V., VASQUEZ, R. M., LAURANCE, S. G., FERREIRA, L. V., STERN, M., BROWN, S. & GRACE, J. 1998. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439442.CrossRefGoogle ScholarPubMed
PHILLIPS, O. L., ARAGAO, L. E. O. C., LEWIS, S. L., FISHER, J. B., LLOYD, J., LOPEZ-GONZALEZ, G., MALHI, Y., MONTEAGUDO, A., PEACOCK, J., QUESADA, C. A., VAN DER HEIJDEN, G., ALMEIDA, S., AMARAL, I., ARROYO, L., AYMARD, G., BAKER, T. R., BANKI, O., BLANC, L., BONAL, D., BRANDO, P., CHAVE, J., DE OLIVEIRA, A. C. A., CARDOZO, N. D., CZIMCZIK, C. I., FELDPAUSCH, T. R., FREITAS, M. A., GLOOR, E., HIGUCHI, N., JIMENEZ, E., LLOYD, G., MEIR, P., MENDOZA, C., MOREL, A., NEILL, D. A., NEPSTAD, D., PATINO, S., PENUELA, M. C., PRIETO, A., RAMIREZ, F., SCHWARZ, M., SILVA, J., SILVEIRA, M., THOMAS, A. S., TER STEEGE, H., STROPP, J., VASQUEZ, R., ZELAZOWSKI, P., DAVILA, E. A., ANDELMAN, S., ANDRADE, A., CHAO, K. J., ERWIN, T., DI FIORE, A., HONORIO, E., KEELING, H., KILLEEN, T. J., LAURANCE, W. F., CRUZ, A. P., PITMAN, N. C. A., VARGAS, P. N., RAMIREZ-ANGULO, H., RUDAS, A., SALAMAO, R., SILVA, N., TERBORGH, J. & TORRES-LEZAMA, A. 2009. Drought sensitivity of the Amazon rainforest. Science 323:13441347.CrossRefGoogle ScholarPubMed
POORTER, L., JANS, L., BONGERS, E. & VAN ROMPAEY, R. S. A. R. 1994. Spatial distribution of gaps along three catenas in the moist forest of Taï National Park, Ivory Coast. Journal of Tropical Ecology 10:385398.CrossRefGoogle Scholar
RENNÓ, C. D., NOBRE, A. D., CUARTAS, L. A., SOARES, J. V., HODNETT, M. G., TOMASELLA, J. & WATERLOO, M. J. 2008. HAND, a new terrain descriptor using SRTM-DEM: mapping terra-firme rainforest environments in Amazonia. Remote Sensing of Environment 112:34693481.CrossRefGoogle Scholar
RIBEIRO, J. E. L. S., HOPKINS, M. G., VICENTINI, A., SOTHERS, C. A., COSTA, M. A. S., BRITO, J. M., SOUZA, M. A. D., MARTINS, L. H. P., LOHMANN, L. G., ASSUNÇÃO, P. A. C. L., PEREIRA, E. C., SILVA, C. F., MESQUITA, M. R. & PROCÓPIO, L. 1999. Flora da Reserva Ducke: guia de identificação das plantas vasculares de uma floresta de terra firme na Amazônia Central. INPA-UFAM, Manaus. 779 pp.Google Scholar
RIBEIRO, M. N. G. & VILLA-NOVA, N. A. 1979. Estudos climatológicos da Reserva Florestal Ducke, Manaus, AM. III Evapotranspiração. Acta Amazônica 9:305309.CrossRefGoogle Scholar
SANTANA, M. E., LODGE, D. J. & LEBOW, P. 2005. Relationship of host recurrence in fungi to rates of tropical leaf decomposition. Pedobiologia 49:549564.CrossRefGoogle Scholar
SARIYILDIZ, T. 2008. Effects of gap-size classes on long-term litter decomposition rates of beech, oak and chest nut species at high elevations in northeast Turkey. Ecosystems 11:841853.CrossRefGoogle Scholar
SOLLINS, P. 1998. Factors influencing species composition in tropical lowland rain forest: does soil matter? Ecology 79:2330.CrossRefGoogle Scholar
TAKYU, M., AIBA, S. I. & KITAYAMA, K. 2003. Changes in biomass, productivity and decomposition along topographical gradients under different geological conditions in tropical lower montane forests on Mount Kinabalu, Borneo. Oecologia 134:397404.CrossRefGoogle ScholarPubMed
WANG, Q. K., WANG, S. L. & HUANG, Y. 2008. Comparisons of litterfall, litter decomposition and nutrient return in a monoculture Cunninghamia lanceolata and a mixed stand in southern China. Forest Ecology and Management 255:12101218.CrossRefGoogle Scholar
WEEDON, J. T., CORNWELL, W. K., CORNELISSEN, J. H. C., ZANNE, A. E., WIRTH, C. & COOMES, D. A. 2009. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecology Letters 12:4556.CrossRefGoogle Scholar
WELLS, J. M. & BODDY, L. 1990. Wood decay, and phosphorus and fungal biomass allocation, in mycelial cord systems. New Phytologist 116:285295.CrossRefGoogle Scholar
WELLS, J. M., HARRIS, M. J. & BODDY, L. 1999. Dynamics of mycelial growth and phosphorus partitioning in developing mycelial cord systems of Phanerochaete velutina: dependence on carbon availability. New Phytologist 142:325334.CrossRefGoogle Scholar
ZHANG, Q. H. & ZAK, J. C. 1995. Effects of gap size on litter decomposition and microbial activity in a subtropical forest. Ecology 76:21962204.CrossRefGoogle Scholar