Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T15:40:29.970Z Has data issue: false hasContentIssue false

Influence of terrestrial habitat isolation on the diversity and temporal distribution of anurans in an agricultural landscape

Published online by Cambridge University Press:  10 March 2011

Fernando Rodrigues da Silva*
Affiliation:
Programa de pós-graduação em Biologia Animal, Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP, Campus São José do Rio Preto, SP, Brazil
Denise de Cerqueira Rossa-Feres
Affiliation:
Departamento de Zoologia e Botânica, UNESP, Campus São José do Rio Preto, SP, Brazil
*
1Corresponding author. Email: bigosbio@yahoo.com.br

Extract

Discontinuity between suitable aquatic and terrestrial habitats forces many amphibian species with aquatic larvae to undertake risky breeding migrations through disturbed environments, potentially contributing to population declines by reducing survival of adults and juveniles (Becker et al. 2007). The north-western region of the state of São Paulo, Brazil, is characterized by fragments of mesophytic semideciduous forest and savanna, surrounded by a matrix of pasture, plantations and urban areas with only 4% of the remaining original vegetation of the state (Ribeiro et al. 2009). Currently, 36 anuran species have been recorded in this region, corresponding to almost 15% of the state's species (Araújo et al. 2009). The anuran species of this region are associated with open environments or are widely distributed in the different Brazilian biomes (Duellman 1999). Silva & Rossa-Feres (2007) showed the importance of forest fragments in this region for 12 anuran species that breed in pools located in a pasture matrix.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AB'SABER, A. N. 1977. Os domínios morfoclimáticos na América do Sul. Geomorfologia 52:1159.Google Scholar
ARAÚJO, O. G. S., TOLEDO, L. F., GARCIA, P. C. A. & HADDAD, C. F. B. 2009. The amphibians of São Paulo State, Brazil. Biota Neotropica 9:197209.CrossRefGoogle Scholar
BARCHA, S. F. & ARID, F. M. 1971. Estudo da evapotranspiração na região norte-ocidental do estado de São Paulo. Revista de Ciências da Faculdade de Ciências e Letras 1:94122.Google Scholar
BECKER, C. G., FONSECA, C. R., HADDAD, C. F. B., BATISTA, R. F. & PRADO, P. I. 2007. Habitat split and the global decline of amphibians. Science 318:17751777.Google Scholar
BURNHAM, K. P. & ANDERSON, D. R. 1998. Model selection and inference: a practical information-theoretic approach. Springer, New York. 353 pp.CrossRefGoogle Scholar
CUSHMAN, S. A. 2006. Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biological Conservation 128:231240.Google Scholar
DEMAYNADIER, P. G. & HUNTER, M. L. 1999. Forest canopy closure and juvenile emigration by pool-breeding amphibians in Maine. Journal of Wildlife Management 63:441450.CrossRefGoogle Scholar
DUELLMAN, W. E. 1999. Distribution patterns of amphibians in the South America. Pp. 255316 in Duellman, W. E. (ed.). Patterns of distribution of amphibians – a global perspective. Johns Hopkins University Press, Baltimore.Google Scholar
FEINSINGER, P. 2001. Designing field studies for biodiversity conservation. Island Press, Washington, DC. 212 pp.Google Scholar
GIBBONS, J. W. 2003. Terrestrial habitat: a vital component for herpetofauna of isolated wetlands. Wetlands Journal 23:630635.Google Scholar
GIBBS, J. P. 1998. Amphibian movements in response to forest edges, roads, and streambeds in Southern New England. Journal of Wildlife Management 62:584589.CrossRefGoogle Scholar
HERRMANN, H. L., BABBITT, K. J., BABER, M. J. & CONGALTON, R. G. 2005. Effects of landscape characteristics on amphibian distribution in a forest-dominated landscape. Biological Conservation 123:139149.CrossRefGoogle Scholar
LAAN, R. & VERBOOM, B. 1990. Effects of pool size and isolation on amphibian communities. Biological Conservation 54:251262.Google Scholar
LIMA, M. G. & GASCON, C. 1999. The conservation value of linear forest remnants in central Amazonia. Biological Conservation 91:241247.Google Scholar
MARSH, D. M. & TRENHAM, P. C. 2001. Metapopulation dynamics and amphibian conservation. Conservation Biology 15:4049.Google Scholar
PRADO, V. H. M. 2009. Uso de remanescentes florestais pela anurofauna da região noroeste do Estado de São Paulo. PhD thesis, Universidade Estadual Paulista, São José do Rio Preto, SP, Brazil.Google Scholar
RIBEIRO, M. C., METZGER, J. P., MARTENSEN, A. C., PONZONI, F. J. & HIROTA, M. M. 2009. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142:11411153.Google Scholar
RITTENHOUSE, T. A. G. & SEMLITSCH, R. D. 2007. Post-breeding habitat use by wood frogs in Missouri oak-hickory forest. Journal of Herpetology 41:645653.Google Scholar
ROTHERMEL, B. B. & SEMLITSCH, R. D. 2002. An experimental investigation of landscape resistance of forest versus old-field habitats to emigrating juvenile amphibians. Conservation Biology 16:13241332.CrossRefGoogle Scholar
SCOTT, N. J. & WOODWARD, B. D. 1994. Surveys at breeding sites. Pp. 8492 in Heyer, W. R., Donnelly, M. A., McDiarmid, R. W., Hayek, L. A. C. & Foster, M. S. (eds). Measuring and monitoring biological diversity – standard methods for amphibians. Smithsonian Institution, Washington DC.Google Scholar
SILVA, F. R. & ROSSA-FERES, D. C. 2007. The use of forest fragments by open-area anurans (Amphibia) in northwestern São Paulo State, Brazil. Biota Neotropica 7:141148.CrossRefGoogle Scholar