Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T05:17:57.131Z Has data issue: false hasContentIssue false

Liana dynamics reflect land-use history and hurricane response in a Puerto Rican forest

Published online by Cambridge University Press:  23 March 2017

J. Aaron Hogan*
Affiliation:
Department of Environmental Science, University of Puerto Rico-Río Piedras, San Juan, PR 00931, USA International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
Silvette Mayorquín
Affiliation:
Department of Environmental Science, University of Puerto Rico-Río Piedras, San Juan, PR 00931, USA
Katherine Rice
Affiliation:
Carleton College, 300 North College Street, Northfield, MN 55057, USA
Jill Thompson
Affiliation:
Department of Environmental Science, University of Puerto Rico-Río Piedras, San Juan, PR 00931, USA Centre for Ecology & Hydrology, Penicuik, Midlothian EH26 0QB, UK
Jess K. Zimmerman
Affiliation:
Department of Environmental Science, University of Puerto Rico-Río Piedras, San Juan, PR 00931, USA
Nicholas Brokaw
Affiliation:
Department of Environmental Science, University of Puerto Rico-Río Piedras, San Juan, PR 00931, USA
*
*Corresponding author. Email: jamesaaronhogan@gmail.com

Abstract:

We studied lianas in a subtropical wet forest in Puerto Rico to understand how hurricane impacts and past human land-uses interact to affect liana dynamics over a 14-year period. We compared a high-intensity land-use area, where the forest that had been cleared, and used for subsistence agriculture before being abandoned in 1934 then regrew to a low-intensity land-use area, in which there had been only some selective experimental logging by the USDA Forest Service in the 1940s. Prior to our study, both areas were strongly affected by Hurricane Hugo in 1989, and again damaged to a lesser degree by Hurricane Georges in 1998, increasing canopy openness and subsequently increasing tree stem densities. Between 2001 and 2015, changes in the light environment and the recovery of forest structure resulted in roughly a 50% reduction in tree stem densities in the high-intensity land-use area, as recruited saplings naturally thinned. In this area, liana abundance increased by 103%, liana biomass tripled, and occupancy of trees by lianas grew by nearly 50%. In the low-intensity land-use area, juvenile stem densities were stable, and resultantly liana abundance only increased by 33%, liana biomass rose 39%, and the occupancy of trees was constant. Liana flower and fruit production increased over the 14-year interval, and these increases were much greater in the high-intensity land-use quadrats. Results of this study do show how rapid forest tree successional dynamics coincide with liana increases, but the confounding of hurricane effects of disturbance at our site, prevent us from asserting that the increases in liana density and biomass can be attributed to the same causes as those in forests elsewhere in the Neotropics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ARROYO‐RODRÍGUEZ, V. & TOLEDO‐ACEVES, T. 2009. Impact of landscape spatial pattern on liana communities in tropical rainforests at Los Tuxtlas, Mexico. Applied Vegetation Science 12:340349.Google Scholar
BARRY, K. E., SCHNITZER, S. A., BREUGEL, M. & HALL, J. S. 2015. Rapid liana colonization along a secondary forest chronosequence. Biotropica 47:672680.Google Scholar
BASNET, K., SCATENA, F., LIKENS, G. E. & LUGO, A. E. 1993. Ecological consequences of root grafting in tabonuco (Dacryodes excelsa) trees in the Luquillo Experimental Forest, Puerto Rico. Biotropica 25: 2835.CrossRefGoogle Scholar
BATES, D., MÄCHLER, M., BOLKER, B. & WALKER, S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67 (1).Google Scholar
BROKAW, N. V. L. & GREAR, J. S. 1991. Forest structure before and after Hurricane Hugo at three elevations in the Luquillo Mountains, Puerto Rico. Biotropica 23:386392.CrossRefGoogle Scholar
BROKAW, N., FRAVER, S., GREAR, J. S., THOMPSON, J., ZIMMERMAN, J.K., WAIDE, R.B, EVERHAM, E. M., HUBBELL, S. P. & FOSTER, R. B. 2004. Disturbance and canopy structure in two tropical forests. Pp. 177194 in Losos, E. & Leigh, E. G. (eds). Tropical forest diversity and dynamism: results from a long-term tropical forest network. University of Chicago Press, Chicago.Google Scholar
BUDOWSKI, G. 1965. Distribution of tropical American rain forest species in the light of successional processes. Turrialba 15:4042.Google Scholar
BUDOWSKI, G. 1970. The distinction between old secondary and climax species in tropical Central American lowland forests. Tropical Ecology 11:4448.Google Scholar
CAMPBELL, E. & NEWBERY, D. M. 1993. Ecological relationships between lianas and trees in lowland rain forest in Sabah, East Malaysia. Journal of Tropical Ecology 9:469490.CrossRefGoogle Scholar
CANHAM, C. D., THOMPSON, J., ZIMMERMAN, J. K. & URIARTE, M. 2010. Variation in susceptibility to hurricane damage as a function of storm intensity in Puerto Rican tree species. Biotropica 42:8794.Google Scholar
CHAVE, J., OLIVIER, J., BONGERS, F., CHÂTELET, P., FORGET, P.-M., VAN DER MEER, P., NORDEN, N., RIÉRA, B. & CHARLES-DOMINIQUE, P. 2008. Above-ground biomass and productivity in a rain forest of eastern South America. Journal of Tropical Ecology 24:355366.Google Scholar
CHAZDON, R. 2014. Functional traits and community assembly during secondary succession. Pp. 167192 in Chazdon, R. (eds). Second growth. University of Chicago Press, Chicago.Google Scholar
DARWIN, C. 1865. On the movements and habits of climbing plants. Journal of the Linnean Society of London, Botany 9:1118.Google Scholar
DEWALT, S. J., SCHNITZER, S. A. & DENSLOW, J. S. 2000. Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. Journal of Tropical Ecology 16:119.CrossRefGoogle Scholar
EWEL, J. J. & WHITMORE, J. L. 1973. The ecological life zones of Puerto Rico and the U. S. Virgin Islands. Forest Service. Research Paper ITF-18. Institute of Tropical. Forestry, Río Piedras, Puerto Rico.Google Scholar
EWERS, F. W., ROSELL, J. A. & OLSON, M. E. 2015. Lianas as structural parasites. Pp. 163188 in Hacke, U. (eds.) Functional and ecological xylem anatomy. Springer, Basel.Google Scholar
FOSTER, D., FLUET, M. & BOOSE, E. 1999. Human or natural disturbance: landscape‐scale dynamics of the tropical forests of Puerto Rico. Ecological Applications 9:555572.CrossRefGoogle ScholarPubMed
GENTRY, A. 1991. Breeding and dispersal systems of lianas. Pp. 393423 in Putz, F. E. & Mooney, H. (eds). The biology of vines. Cambridge University Press, Cambridge.Google Scholar
GHAZOUL, J. & SHEIL, D. 2010. Tropical rain forest ecology, diversity, and conservation. Oxford University Press, Oxford. 516 pp.Google Scholar
GIANOLO, E. 2016. Evolutionary implications of the climbing habit in plants. Pp. 239251 in Schnitzer, S. A., Bongers, F., Burnham, R. J. & Putz, F. E. (eds). Ecology of lianas. Wiley-Blackwell, Oxford.Google Scholar
HOGAN, J. A., ZIMMERMAN, J. K., THOMPSON, J., NYTCH, C. & URIARTE, M. 2016. The interaction of land-use legacies and hurricane disturbance in subtropical wet forest: twenty-one years of change. Ecosphere 7:e01405.Google Scholar
INGWELL, L. L., WRIGHT, S. J., BECKLUND, K. K., HUBBELL, S. P. & SCHNITZER, S. A. 2010. The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. Journal of Ecology 98:879887.CrossRefGoogle Scholar
LAURANCE, W. F., PÉREZ-SALICRUP, D., DELAMÔNICA, P., FEARNSIDE, P. M., D'ANGELO, S., JEROZOLINSKI, A., POHL, L. & LOVEJOY, T. E. 2001. Rain forest fragmentation and the structure of Amazonian liana communities. Ecology 82:105116.CrossRefGoogle Scholar
LEDO, A. & SCHNITZER, S. A. 2014. Disturbance and clonal reproduction determine liana distribution and maintain liana diversity in a tropical forest. Ecology 95:21692178.CrossRefGoogle Scholar
LETCHER, S. G. & CHAZDON, R. L. 2009. Lianas and self-supporting plants during tropical forest succession. Forest Ecology and Management 257:21502156.CrossRefGoogle Scholar
OGLE, K., URIARTE, M., THOMPSON, J., JOHNSTONE, J., JONES, A., LIN, Y., MCINTIRE, E. & ZIMMERMAN, J. 2006. Implications of vulnerability to hurricane damage for long-term survival of tropical tree species: a Bayesian hierarchical analysis. Pp. 198217 in Clark, J. S. & Gelfand, A. (eds). Applications of computational statistics in the environmental sciences: hierarchical Bayes and MCMC methods. Oxford University Press, Oxford.Google Scholar
OSTERTAG, R., SILVER, W. L. & LUGO, A. E. 2005. Factors affecting mortality and resistance to damage following hurricanes in a rehabilitated subtropical moist forest. Biotropica 37:1624.Google Scholar
PÉREZ-SALICRUP, D. R., SORK, V. L. & PUTZ, F. E. 2001. Lianas and trees in a liana forest of Amazonian Bolivia. Biotropica 33:3447.CrossRefGoogle Scholar
PHILLIPS, O. L. 1996. Long-term environmental change in tropical forests: increasing tree turnover. Environmental Conservation 23:235248.CrossRefGoogle Scholar
PHILLIPS, O. L., MARTÍNEZ, R. V., ARROYO, L., BAKER, T. R., KILLEEN, T., LEWIS, S. L., MALHI, Y., MENDOZA, A. M., NEILL, D. & VARGAS, P. N. 2002. Increasing dominance of large lianas in Amazonian forests. Nature 418:770774.Google Scholar
PUTZ, F. E. 1983. Liana biomass and leaf area of a" tierra firme" forest in the Rio Negro Basin, Venezuela. Biotropica 15:185189.Google Scholar
PUTZ, F. E. 1984. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65:17131724.Google Scholar
PUTZ, F. E., LEE, H. & GOH, R. 1984. Effects of post-felling silvicultural treatments on woody vines in Sarawak. Malaysian Forester 47: 214226.Google Scholar
RICE, K., BROKAW, N. & THOMPSON, J. 2004. Liana abundance in a Puerto Rican forest. Forest Ecology and Management 190:3341.CrossRefGoogle Scholar
SCATENA, F. N., BLANCO, F., BEARD, K., WAIDE, R., LUGO, A. E., BROKAW, N., SILVER, W., HAINES, B. & ZIMMERMAN, J. 2012. Disturbance regime. Pp. 164200 in Brokaw, N., Crowl, T. A., Lugo, A. E., McDowell, W. H., Scatena, F. N., Waide, R. B. & Willig, M. R. (eds). A Caribbean forest tapestry: the multidimensional nature of disturbance and response. Oxford University Press, Oxford.Google Scholar
SCHNITZER, S. A. 2015. Increasing liana abundance in Neotropical forests: causes and consequences. Pp. 451464 in Schnitzer, S. A., Bongers, F., Burnham, R. J. & Putz, F. (eds). Ecology of lianas. Wiley-Blackwell, Oxford.Google Scholar
SCHNITZER, S. A. & BONGERS, F. 2011. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecology Letters 14:397406.Google Scholar
SCHNITZER, S. A. & CARSON, W. P. 2010. Lianas suppress tree regeneration and diversity in treefall gaps. Ecology Letters 13:849857.Google Scholar
SCHNITZER, S. A., DALLING, J. W. & CARSON, W. P. 2000. The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap‐phase regeneration. Journal of Ecology 88:655666.Google Scholar
SCHNITZER, S. A., DEWALT, S. J. & CHAVE, J. 2006. Censusing and measuring lianas: a quantitative comparison of the common methods. Biotropica 38:581591.CrossRefGoogle Scholar
SCHNITZER, S. A., VAN DER HEIJDEN, G., MASCARO, J. & CARSON, W. P. 2014. Lianas in gaps reduce carbon accumulation in a tropical forest. Ecology 95:30083017.CrossRefGoogle Scholar
SCHNITZER, S. A., MANGAN, S. A. & HUBBELL, S. P. 2015. Lianas of Barro Colorado Island, Panama. Pp. 7690 in Schnitzer, S. A., Bongers, F., Burnham, R. J. & Putz, F. (eds). Ecology of lianas. Wiley-Blackwell, Oxford.Google Scholar
SMITH, J. R., QUEENBOROUGH, S. A., ALVIA, P., ROMERO‐SALTOS, H. & VALENCIA, R. 2016. No strong evidence for increasing liana abundance in the Myristicaceae of a Neotropical aseasonal rain forest. Ecology 98:456466.Google Scholar
SOIL SURVEY STAFF. 1995. Order 1 soil survey of the Luquillo long-term ecological research grid, Puerto Rico. USDA, Natural Resources Conservation Service, Lincoln.Google Scholar
THOMPSON, J., BROKAW, N., ZIMMERMAN, J. K., WAIDE, R. B., EVERHAM, E. M., LODGE, D. J., TAYLOR, C. M., GARCÍA-MONTIEL, D. & FLUET, M. 2002. Land use history, environment, and tree composition in a tropical forest. Ecological Applications 12:13441363.CrossRefGoogle Scholar
THOMPSON, J., BROKAW, N., ZIMMERMAN, J. K., WAIDE, R. B., EVERHAM, E. M. & SCHAEFER, D. A. 2004. Luquillo Forest Dynamics Plot. Pp. 540550 in Losos, E. & Leigh, E. G. (eds). Tropical forest diversity and dynamism: results from a long-term tropical forest network. University of Chicago Press, Chicago.Google Scholar
TOBIN, M. F., WRIGHT, A. J., MANGAN, S. A. & SCHNITZER, S. A. 2012. Lianas have a greater competitive effect than trees of similar biomass on tropical canopy trees. Ecosphere 3:111.CrossRefGoogle Scholar
TYMEN, B., RÉJOU‐MÉCHAIN, M., DALLING, J. W., FAUSET, S., FELDPAUSCH, T. R., NORDEN, N., PHILLIPS, O. L., TURNER, B. L., VIERS, J. & CHAVE, J. 2016. Evidence for arrested succession in a liana‐infested Amazonian forest. Journal of Ecology 104:149159.Google Scholar
URIARTE, M., CANHAM, C. D., THOMPSON, J., ZIMMERMAN, J. K., MURPHY, L., SABAT, A. M., FETCHER, N. & HAINES, B. L. 2009. Natural disturbance and human land use as determinants of tropical forest dynamics: results from a forest simulator. Ecological Monographs 79:423443.Google Scholar
VAN DER HEIJDEN, G., PHILLIPS, O. L. & SCHNITZER, S. A. 2015. Impacts of lianas on forest-level carbon storage and sequestration. Pp. 164175 in Schnitzer, S. A., Bongers, F., Burnham, R. J. & Putz, F. E. (eds). Ecology of lianas. Wiley-Blackwell, Oxford.CrossRefGoogle ScholarPubMed
VISSER, M. D., SCHNITZER, S. A., MULLER-LANDAU, H. C., JONGEJANS, E., KROON, H., COMITA, L. S., HUBBELL, S. P. & WRIGHT, S. J. In press. Lianas differentially impact population growth rates of tropical tree species. Journal of Ecology.Google Scholar
WEAVER, P. L. 2012. The Luquillo mountains: forest resources and their history. General Technical Report –International Institute of Tropical Forestry, USDA Forest Service (IITF-GTR-44).CrossRefGoogle Scholar
WRIGHT, S. J. 2005. Tropical forests in a changing environment. Trends in Ecology and Evolution 20:553560.Google Scholar
WRIGHT, S. J., CALDERÓN, O., HERNÁNDEZ, A. & PATON, S. 2004. Are lianas increasing in importance in tropical forests? A 17-year record from Panama. Ecology 85:484489.CrossRefGoogle Scholar
WRIGHT, S. J., MULLER-LANDAU, H. C., CALDERON, O. & HERNANDEZ, A. 2005. Annual and spatial variation in seedfall and seedling recruitment in a neotropical forest. Ecology 86:848860.Google Scholar
YORKE, S. R., SCHNITZER, S. A., MASCARO, J., LETCHER, S. G. & CARSON, W. P. 2013. Increasing liana abundance and basal area in a tropical forest: the contribution of long‐distance clonal colonization. Biotropica 45:317324.CrossRefGoogle Scholar
ZIMMERMAN, J. K., EVERHAM, E. M., WAIDE, R. B., LODGE, D. J., TAYLOR, C. M. & BROKAW, N. V. 1994. Responses of tree species to hurricane winds in subtropical wet forest in Puerto Rico: implications for tropical tree life histories. Journal of Ecology 82:911922.Google Scholar
ZIMMERMAN, J. K., WRIGHT, S. J., CALDERÓN, O., PAGAN, M. A. & PATON, S. 2007. Flowering and fruiting phenologies of seasonal and aseasonal neotropical forests: the role of annual changes in irradiance. Journal of Tropical Ecology 23:231251.Google Scholar
ZURR, A., IENO, E. N., WALKER, N., SAVELIEV, A. A. & SMITH, G. M. 2009. Mixed effects models and extension in ecology with R. (First edition). Springer-Verlag, New York. 574 pp.Google Scholar