Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T19:48:11.842Z Has data issue: false hasContentIssue false

Microbial activity in contrasting conditions of soil C and N availability in a tropical dry forest

Published online by Cambridge University Press:  01 July 2009

Noé Manuel Montaño
Affiliation:
Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 27-3 Sta. María de Guido, 58090, Morelia, Michoacán, México
Ana Lidia Sandoval-Pérez
Affiliation:
Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 27-3 Sta. María de Guido, 58090, Morelia, Michoacán, México
Felipe García-Oliva*
Affiliation:
Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 27-3 Sta. María de Guido, 58090, Morelia, Michoacán, México
John Larsen
Affiliation:
University of Aarhus, Faculty of Agricultural Sciences, Department of Integrated Pest Management, Research Centre Flakkebjerg, DK-4200 Slagelse, Denmark
Mayra E. Gavito
Affiliation:
Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 27-3 Sta. María de Guido, 58090, Morelia, Michoacán, México
*
1Corresponding author. Email: fgarcia@oikos.unam.mx

Abstract:

We studied the relationships between soil nutrient availability and microbial biomass and activity of two contrasting soil conditions in a tropical deciduous forest in western Mexico. Hilltops have higher pH, water, dissolved organic C, and ammonium concentrations than hillslopes. Our main hypothesis was that soil microbial biomass, microbial activity and bacterium species richness would be higher in soils with high availability of nutrients. Fifteen soil cores, 0–5 cm depth, were taken in the dry, early rainy and rainy season, from each of the ten replicate plots in hilltop and hillslope positions located on three contiguous small watersheds. We measured moisture, C, N and P availability, potential C mineralization, net nitrification, microbial biomass and culturable heterotrophic and nitrifying bacteria in composite samples from each plot. Microbial biomass, species richness of culturable heterotrophic bacteria and C mineralization were significantly higher on hilltops than on hillslopes. Net nitrification was, in contrast, significantly higher on hillslopes than on hilltops and counts of culturable nitrifying bacteria were also significantly higher in the rainy-season samples. Hilltops and hillslopes had low similarity in composition of culturable heterotrophic bacterial species, particularly during the rainy season. The results suggested that C and N availability and seasonal changes in soil moisture are important controlling factors for some soil culturable-bacterial species, which may affect both C mineralization and nitrification in these tropical deciduous forest soils.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALEXANDER, M. 1982. Most probable number method for microbial populations. Pp. 14671472 in Black, C. A. (ed.). Methods of soil analysis. American Society Agronomy Inc., Madison.Google Scholar
ATLAS, R. M. & BARTHA, R. 2002. Microbial ecology: fundamentals and applications. Benjamin Cumminngs, Redwood City. 563 pp.Google Scholar
BALSER, T. C. & FIRESTONE, M. K. 2005. Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry 73:395415.CrossRefGoogle Scholar
BALSER, T. C., KINZIG, A. P. & FIRESTONE, M. K. 2002. Linking soil microbial communities and ecosystem functioning. Pp. 265296 in Kinzing, A. P., Pacala, S. W. & Tilman, D. (eds.). The functional consequences of biodiversity: empirical progress and theoretical extensions. Princeton University Press, Princeton.Google Scholar
BALVANERA, P., LOTT, E., SEGURA, G., SIEBE, C. & ISLAS, A. 2002. Patterns of beta-diversity in a Mexican tropical dry forest. Journal of Vegetation Science 13:145158.CrossRefGoogle Scholar
BEGON, M., HARPER, J. L. & TOWNSEND, C. R. 1986. Ecology: individuals, populations, and communities. Sinauer Associations, Sunderland. 876 pp.Google Scholar
BELOTTE, D., CURIEN, J. B., MACLEAN, R. C. & BELL, G. 2003. An experimental test of local adaptation in soil bacteria. Evolution 57:2736.Google ScholarPubMed
BOOTH, M. S., STARK, J. M. & RASTETTER, E. 2005. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecology 75:139157.Google Scholar
BOSSIO, D. A., SCOW, K. M., GUANAPALA, N. & GRAHAM, K. J. 1998. Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecology 36:112.CrossRefGoogle ScholarPubMed
BROOKES, P., LANDMAN, A., PRUDEN, G. & JENKINSON, D. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry 17:837842.CrossRefGoogle Scholar
CAMPO, J., JARAMILLO, V. J. & MAASS, J. M. 1998. Pulses of soil phosphorus availability in a Mexican tropical dry forest: effects on seasonality and level of wetting. Oecologia 115:167172.CrossRefGoogle Scholar
CAMPO, J., MAASS, J. M. & DE PABLO, L. 2001. Intemperismo en un bosque tropical seco de México. Agrociencia 35:245254.Google Scholar
CARNEY, K. M. & MATSON, P. A. 2005. Plant communities, soil microorganisms, and soil carbon cycling: does altering the words belowground matter to ecosystem functioning? Ecosystems 8:928940.CrossRefGoogle Scholar
CARNEY, K. M., MATSON, P.A. & BOHANNAN, B. J. 2004. Diversity and composition of tropical soil nitrifiers across a plant diversity gradient and among land-use types. Ecology Letters 7:648694.CrossRefGoogle Scholar
CLEVELAND, C., NEMERGUT, D., SCHMIDT, S. K. & TOWNSEND, A. R. 2007. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82:229240.CrossRefGoogle Scholar
COOKSON, W. R., ABAYE, D. A., MARSCHNER, P., MUPHY, D. V., STOCKDALE, S. A. & GOULDING, K. W. 2005. The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure. Soil Biology and Biochemistry 37:17261737.CrossRefGoogle Scholar
COOKSON, W. R., OSMAN, M., MARSCHNER, P., ABAYE, D. A., CLARK, I., MUPHY, D. V., STOCKDALE, S. A. & WATSON, C. A. 2007. Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biology and Biochemistry 39:744756.CrossRefGoogle Scholar
COTLER, H., DURÁN, E. & SIEBE, C. 2002. Caracterización morfo-edafológica y calidad de sitio de un bosque tropical caducifolio. Pp. 1779 in Noguera, F., Vega, J., García, A. & Quezada, M. (eds.). Historia natural de Chamela. Instituto de Biología-UNAM, Mexico City.Google Scholar
DIAMOND, J. 1988. Factors controlling species diversity: overview and synthesis. Annals of the Missouri Botanical Garden 75:117129.CrossRefGoogle Scholar
FIERER, N., BRADFORD, M. A. & JACKSON, R. B. 2007. Towards an ecological classification of soil bacteria. Ecology 88:13541364.CrossRefGoogle Scholar
FINLAY, B. J. 2002. Global dispersal of free-living microbial eukaryote species. Science 296:10611063.CrossRefGoogle ScholarPubMed
FINLAY, B. & CLARK, J. 1999. Ubiquitous dispersal of microbial species. Nature 400:828.CrossRefGoogle Scholar
FONTAINE, S. & BAROT, S. 2005. Size and functional diversity of microbe populations control plant persistence and long-term soil C accumulation. Ecology Letters 8:10751087.CrossRefGoogle Scholar
FONTAINE, S., MARIOTTI, A. & ABBADIE, L. 2003. The priming effect of organic matter: a question of microbial competition. Soil Biology and Biochemistry 35:837843.CrossRefGoogle Scholar
GALICIA, L., LÓPEZ-BLANCO, J., ZARCO-ARISTA, A. E., FILIPS, V. & GARCÍA-OLIVA, F. 1999. The relationship between solar radiation interception and soil water content in a tropical deciduous forest in Mexico. Catena 36:153164.CrossRefGoogle Scholar
GARCÍA-MÉNDEZ, G., MAASS, J. M., MATSON, P. & VITOUSEK, P. 1991. Nitrogen transformations and nitrous oxide flux in a tropical deciduous forest in Mexico. Oecologia 88:362366.CrossRefGoogle Scholar
GARCÍA-OLIVA, F. & MAASS, J. M. 1998. Efecto de la transformación de la selva a pradera sobre la dinámica de los nutrientes en un ecosistema tropical estacional en México. Boletín de la Sociedad Botánica de México 62:3948.Google Scholar
GARCÍA-OLIVA, F., CAMU, A. & MAASS, J. M. 2002. El clima de la Región de Central de la costa del Pacífico Mexicano. Pp. 310 in Noguera, F., Vega, J., García, A. & Quezada, M. (eds.). Historia natural de Chamela. Instituto de Biología UNAM, Mexico city.Google Scholar
GARCÍA-OLIVA, F., SVESHTAROVA, B. & OLIVA, M. 2003. Seasonal effect on soil organic carbon dynamics in a tropical deciduous forest ecosystem in western Mexico. Journal of Tropical Ecology 19: 111.CrossRefGoogle Scholar
GODDARD, M. R. & BRADFORD, M. A. 2003. The adaptive response of a natural microbial population to carbon and nitrogen limitation. Ecology Letters 6:594598.CrossRefGoogle Scholar
HU, S. J., VAN BRUGGEN, A. H. C. & GRÜNWALD, N. J. 1999. Dynamics of bacterial populations in relation to carbon availability in a residue-amended soil. Applied Soil Ecology 13:2130.CrossRefGoogle Scholar
JHA, P. B., SINGH, J. S. & KASHYAP, A. K. 1996. Dynamics of viable nitrifier community and nutrient availability in dry tropical forest habitat as affected by cultivation and soil texture. Plant and Soil 180:277285.CrossRefGoogle Scholar
JOERGENSEN, R. G. 1996. The fumigation-extraction method to estimate soil microbial biomass: calibration of the KEC value. Soil Biology and Biochemistry 28:2531.CrossRefGoogle Scholar
JONES, D. L. & WILLETT, V. B. 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry 38:991999.CrossRefGoogle Scholar
LÓPEZ-BLANCO, J., GALICIA, L. & GARCÍA-OLIVA, F. 1999. Hierarchical analysis of relief features in a small watershed in a tropical deciduous forest ecosystem in Mexico. Supplementi Geografia Fisica e Dinamica Quaternaria 22:3340.Google Scholar
LOTT, E. J. 1993. Annotated checklist of the vascular flora of the Chamela Bay region, Jalisco, Mexico. Occasional Papers of the California Academy of Sciences 148:160.Google Scholar
MAASS, J. M., JARAMILLO, V., MARTÍNEZ-YRÍZAR, A., GARCÍA-OLIVA, F., PÉREZ-JIMÉNEZ, A. & SARUKHÁN, J. 2002. Aspectos funcionales del ecosistema de la selva baja caducifolia en Chamela, Jalisco. Pp. 525551 in Noguera, F., Vega, J., García, A. & Quezada, M. (eds.). Historia natural de Chamela. Instituto de Biología UNAM, Mexico City.Google Scholar
MAGURRAN, A. E. 2004. Ecological diversity and its measurement. Princeton University Press, Princeton. 256 pp.Google Scholar
MARTÍNEZ-YRÍZAR, A., MAASS, J. M., PÉREZ-JIMÉNEZ, A. & SARUKHÁN, J. 1996. Net primary productivity of a tropical deciduous forest ecosystem in western Mexico. Journal of Tropical Ecology 12:169175.CrossRefGoogle Scholar
MILES, L., NEWTON, A. C., DEFRIES, R. S., BLYTH, S., KAPOS, V. & GORDON, E. 2006. A global overview of the conservation status of tropical dry forests. Journal of Biogeography 33:491505.CrossRefGoogle Scholar
MONTAÑO, N. M., GARCÍA-OILVA, F. & JARAMILLO, J. V. 2007. Dissolved organic carbon affects soil microbial and nitrogen dynamics in a Mexican tropical deciduous forest. Plant and Soil 295:265277.CrossRefGoogle Scholar
MURPHY, J. & RILEY, J. P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:3136.CrossRefGoogle Scholar
MURPHY, P. G. & LUGO, E. A. 1986. Ecology of tropical dry forests. Annual Review Ecology and Systematics 17:6788.CrossRefGoogle Scholar
NICHOLS, D. 2007. Cultivation gives context to the microbial ecologist. FEMS Microbiology Ecology 60:351367.CrossRefGoogle Scholar
NOGUEZ, A. M., ARITA, H. T., ESCALANTE, A. E., FORNEY, L. J., GARCÍA-OLIVA, F. & SOUZA, V. 2005. Microbial macroecology: highly structured prokaryotic soil assemblages in a tropical deciduous forest. Global Ecology and Biogeography 14:241248.CrossRefGoogle Scholar
NOGUEZ, A. M., ESCALANTE, A., FORNEY, L., NAVA-MENDOZA, M., ROSAS, I., SOUZA, V. & GARCÍA-OLIVA, F. 2008. Soil aggregates in a tropical deciduous forest: effects on C and N dynamics, and microbial communities as determined by t-RFLPs. Biogeochemistry 19:209220.CrossRefGoogle Scholar
PAUL, E. & CLARK, F. 1989. Soil microbiology and biochemistry. Academic Press, New York. 275 pp.Google Scholar
ROBERTSON, P. G., COLEMAN, D. C., BLEDSOE, C. S. & SOLLINS, P. 1999. Standard soil methods for long-term ecological research (LTER). Oxford University Press, Oxford. 457 pp.CrossRefGoogle Scholar
ROTHSCHILD, L. 2006. A microbiologist explodes the myth of the unculturables. Nature 443:249.Google Scholar
ROY, S. & SINGH, J. S. 1994. Consequences of habitat heterogeneity for availability of nutrients in a dry tropical forest. Journal of Ecology 82:503509.CrossRefGoogle Scholar
SASSER, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. Pp. 199203 in Klement, Z., Rudolph, K. & Sands, D. C. (eds.). Methods in phytobacteriology. Akademiai Kiado, Budapest.Google Scholar
SINGH, J. S. & KASHYAP, A. K. 2006. Dynamics of viable nitrifier community, N mineralization and nitrification in seasonally dry tropical forests and savanna. Microbiology Research 161:169179.CrossRefGoogle ScholarPubMed
SINGH, J. S., RAGHUBANSHI, S., SINGH, R. S. & SRIVASTAVA, C. 1989. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature 338:499500.CrossRefGoogle Scholar
SOKAL, R. & ROHLF, F. 1995. Biometry. Freeman and Company, San Francisco. 832 pp.Google Scholar
TORSVIK, V. & ØVREÂS, L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology 5:240245.CrossRefGoogle ScholarPubMed
TORSVIK, V., ØVREÂS, L. & THINGSTAD, T. E. 2002. Prokaryotic diversity-magnitude, dynamics and controlling factors. Science 296:10641066.CrossRefGoogle ScholarPubMed
VANCE, E. D., BROOKES, A. C. & JENKINSON, D. S. 1987. An extraction method for measuring soil microbial biomass carbon. Soil Biology and Biochemistry 19:703707.CrossRefGoogle Scholar
VERHAGEN, F. J. & LAANBROEK, H. J. 1991. Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats. Applied and Environmental Microbiology 57:32553263.CrossRefGoogle ScholarPubMed
VON ENDE, C. N. 1993. Repeated measures analysis: growth and other time-dependent measures. Pp. 113137 in Scheiner, S. M. & Gurevitch, J. (eds.). Design and analysis of ecological experiments. Chapman and Hall, New York.Google Scholar
WALDROP, M. P., BALSER, T. C. & FIRESTONE, M. K. 2000. Linking microbial community composition to function in a tropical soil. Soil Biology and Biochemistry 32:18371846.CrossRefGoogle Scholar
WILLIAMS, M. A. & RICE, C. W. 2007. Seven years of enhanced water availability influences the physiological, structural, and functional attributes of a soil microbial community. Applied Soil Ecology 35:535545.CrossRefGoogle Scholar
ZHOU, J., XIA, B., TRAVES, D. S., WUL, Y., MARCH, T. L., O'NEILL, R. V., PALUMBO, A. V. & TIEDJE, J. M. 2002. Spatial and resource factors influencing high microbial diversity in soil. Applied and Environmental Microbiology 68:326334.CrossRefGoogle ScholarPubMed
ZUBERER, D. A. 1994. Recovery and enumeration of viable bacteria. Pp. 119144 in Weaver, R. W. (ed.). Methods of soil analysis, part 2: microbiological and biochemical properties. SSSA Book series: 5. Soil Science Society America, Inc., Madison.Google Scholar