Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T06:40:16.408Z Has data issue: false hasContentIssue false

Microclimatic patterns correlate with the distribution of epiphyllous bryophytes in a tropical lowland rain forest in Costa Rica

Published online by Cambridge University Press:  01 May 2009

Michaela Sonnleitner
Affiliation:
Department of Conservation Biology, Vegetation Ecology and Landscape Ecology, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, Vienna 1030, Austria
Stefan Dullinger
Affiliation:
Vienna Institute for Nature Conservation and Analysis, Giessergasse 6/7, Vienna 1090, Austria
Wolfgang Wanek
Affiliation:
Department of Chemical Ecology and Ecosystem Research, University of Vienna, Althanstraße 14, Vienna 1090, Austria
Harald Zechmeister*
Affiliation:
Department of Conservation Biology, Vegetation Ecology and Landscape Ecology, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, Vienna 1030, Austria
*
1Corresponding author. Email: harald.zechmeister@univie.ac.at

Abstract:

Quantitative analyses of the factors driving the distribution of bryophytes in the phyllosphere of tropical rain forests are rare. In this study we sampled epiphyllous bryophytes on two leaves of each of 57 individuals belonging to four phorophyte species (Asplundia pittieri, Carludovica drudei, Costus laevis and Dieffenbachia concinna) at three adjacent, but microclimatically varied sites in the Esquinas forest, Costa Rica. Microclimatic parameters and phorophyte identities were correlated to differences in cover, diversity and species composition of bryophyte assemblages by means of Kruskal–Wallis tests, non-metric multidimensional scaling and indicator species analysis. High relative humidity and in particular daily fluctuations in relative humidity proved to be the most important factors for epiphyll distribution suggesting severe constraints of epiphyll colonisation by pronounced humidity fluctuations. Differences in air temperature and light availability as well as phorophyte identity were only weakly correlated with bryophyte cover and diversity. However, species composition of epiphyllous assemblages was related to all microclimatic variables as well as to phorophyte identity. The strong response of epiphyllous bryophytes to even subtle microclimatic variations suggests that undisturbed forest canopies and their control on microclimate may be essential for the development of epiphyll communities.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BENTLEY, B. L. 1987. Nitrogen fixation by epiphylls in a tropical rainforest. Annals of the Missouri Botanical Garden 74:237241.CrossRefGoogle Scholar
BERNECKER-LÜCKING, A. 1998. The genus Cyclolejeunea A. Evans (Hepaticae, Lejeuneaceae) in Costa Rica. Phyton – Annales Rei Botanicae 38:175193.Google Scholar
BREHM, G. & FIEDLER, K. 2004. Ordinating tropical moth ensembles from an elevational gradient: a comparison of common methods. Journal of Tropical Ecology 20:165172.CrossRefGoogle Scholar
BURD, M. 2007. Adaptive function of drip tips: a test of the epiphyll hypothesis in Psychotria marginata and Faramea occidentalis (Rubiaceae). Journal of Tropical Ecology 23:449455.CrossRefGoogle Scholar
COLEY, P. D. & KURSAR, T. A. 1996. Causes and consequences of epiphyll colonization. Pp. 337362 in Mulkey, S. S., Chazdon, R. L. & Smith, A. P. (eds.). Tropical forest plant ecophysiology. Chapman and Hall, New York.CrossRefGoogle Scholar
COLEY, P. D., KURSAR, T. A. & MACHADO, J. L. 1993. Colonization of tropical rain forest leaves by epiphylls: effects of site and host plant leaf lifetime. Ecology 74:619623.CrossRefGoogle Scholar
DAUPHIN, G. 2000. The genus Ceratolejeunea Jack & Steph. (Hepaticae: Lejeuneaceae) in Tropical America. Ph.D thesis, Georg-August-University, Göttingen, Germany.Google Scholar
DUFRENE, M. & LEGENDRE, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67:345366.Google Scholar
EGGERS, J. 2001. Epiphyllous Lejeuneaceae in Costa Rica. Contributions to the altitudinal distribution of selected species. Tropical Bryology 20:109115.Google Scholar
FRAHM, J.-P. 1990a. The effect of light and temperature on the growth of the bryophytes of tropical rain forests. Nova Hedwigia 51:151164.Google Scholar
FRAHM, J.-P. 1990b. The ecology of epiphytic bryophytes on Mt. Kinabalu, Sabah (Malaysia). Nova Hedwigia 51:121132.Google Scholar
FREIBERG, E. 1999. Influence of microclimate on the occurrence of Cyanobacteria in the phyllosphere in a premontane rain forest of Costa Rica. Plant Biology 1:244252.CrossRefGoogle Scholar
GRADSTEIN, S. R. 1994. Lejeuneaceae: Ptychantheae, Brachiolejeuneae. (Flora Neotropica Monograph 62 edition). New York Botanical Garden, New York. 216 pp.Google Scholar
GRADSTEIN, S. R. 1997. The taxonomic diversity of epiphyllous bryophytes. Abstracta Botanica 21:1519.Google Scholar
GRADSTEIN, S. R., CHURCHILL, S. P. & SALAZAR-ALLEN, N. 2001. Guide to the bryophytes of tropical America. The New York Botanical Garden Press, New York. 577 pp.Google Scholar
HOLDRIDGE, L. R., GRENKE, W. C., HATHEWAY, W. H., LIANG, T. & TOSI, J. A. 1971. Forest environments in tropical life zones – a pilot study. Pergamon Press Ltd., Oxford. 747 pp.Google Scholar
HUBER, W. 2005. Tree diversity and biogeography of four one-hectare plots in the lowland rainforest of the Piedras Blancas National Park (“Regenwald der Österreicher”), Costa Rica. PhD thesis, University of Vienna, Austria.Google Scholar
ILKIU-BORGES, A. L. 2005. A taxonomic revision of Echinocolea (Lejeuneaceae, Hepaticae). Nova Hedwigia 80:4571.CrossRefGoogle Scholar
JONCKHEERE, I., NACKAERTS, K., MUYS, B. & COPPIN, P. 2005. Assessment of automatic gap fraction estimation of forests from digital hemispherical photography. Agricultural and Forest Meteorology 132:96114.CrossRefGoogle Scholar
LÜCKING, A. 1995. Diversität und Mikrohabitatspräferenzen epiphyller Moose in einem tropischen Regenwald in Costa Rica. PhD thesis, Georg-August-University, Göttingen, Germany.Google Scholar
LÜCKING, A. 1997. Diversity and distribution of epiphyllous bryophytes in a tropical rainforest in Costa Rica. Abstracta Botanica 21:7987.Google Scholar
LÜCKING, R. 1999. Ecology of foliicolous lichens at the ‘Botarrama’ trail (Costa Rica), a neotropical rainforest. IV. Species associations, their salient features and their dependence on environmental variables. Lichenologist 31:269289.CrossRefGoogle Scholar
LÜCKING, R. 2001. Lichens on leaves in tropical rainforests: life in a permanently ephemerous environment. Pp. 4177 in Gottsberger, G. & Liede, S. (eds.). Life forms and dynamics in tropical forests. J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung, Berlin.Google Scholar
MARINO, P. C. & SALAZAR ALLEN, N. 1993. Tropical epiphyllous hepatic communities growing on two species of shrub in Barro Colorado Island, Panama: the influence of light and microsite. Lindbergia 17:9195.Google Scholar
MONGE-NÁJERA, J. 1989. The relationship of epiphyllous liverworts with leaf characteristics and light in Monte Verde, Costa Rica. Cryptogamie Bryologie 10:345352.Google Scholar
MONGE-NÁJERA, J. & BLANCO, M. A. 1995. The influence of leaf characteristics on epiphyllic cover: a test of hypothesis with artificial leaves. Tropical Bryology 11:59.Google Scholar
NOBIS, M. & HUNZIKER, U. 2005. Automatic thresholding for hemispherical canopy-photographs based on edge detection. Agricultural and Forest Meteorology 128:243250.CrossRefGoogle Scholar
OLARINMOYE, S. O. 1974. Ecology of epiphyllous liverworts: growth in three natural habitats in western Nigeria. Journal of Bryology 8:275289.CrossRefGoogle Scholar
PÓCS, T. 1978. Epiphyllous communities and their distribution in East Africa. Bryophytorum Bibliotheca 13:681714.Google Scholar
PÓCS, T. 1982a. Tropical forest bryophytes. Pp. 59105 in Smith, A. J. E. (ed.). Bryophyte ecology. Chapman & Hall, London.CrossRefGoogle Scholar
PÓCS, T. 1982b. An epiphyllous liverwort community from the Caucasus Mountains. Bryologische Beiträge 1:1322.Google Scholar
RICHARDS, P. W. 1954. Notes on the bryophyte communities of lowland tropical forest, with special reference to Morabelli Creek, British Guiana. Vegetatio 5–6:319328.CrossRefGoogle Scholar
RICHARDS, P. W. 1984. The ecology of tropical forest bryophytes. Pp. 12331270 in Schuster, R. M. (ed.). New manual of bryology. The Hattori Botanical Laboratory, Nichinan.Google Scholar
ROSKOSKI, J. P. 1981. Epiphyll dynamics of a tropical understorey. Oikos 37:252256.CrossRefGoogle Scholar
RUINEN, J. 1961. The phyllosphere, an ecological neglected milieu. Plant and Soil 15:81109.CrossRefGoogle Scholar
SACHS, L. & HEDDERICH, J. 2006. Angewandte Statistik: Methodensammlung mit R. (Twelfth edition). Springer, Berlin. 236 pp.Google Scholar
SCHÄFER-VERWIMP, A. 2004. The genus Diplasiolejeunea (Lejeuneaceae, Marchantiopsida) in the Tropical Andes, with description of two new species. Cryptogamie Bryologie 25:317.Google Scholar
TEEUWEN, M. 1989. A revision of the genus Odontolejeunea (Spruce) Schiffn. – (Leujeuneaceae, Hepaticae). Nova Hedwigia 48:132.Google Scholar
WANEK, W. & PÖRTL, K. 2005. Phyllosphere nitrogen relations: reciprocal transfer of nitrogen between epiphyllous liverworts and host plants in the understorey of a lowland tropical wet forest in Costa Rica. New Phytologist 166:577588.CrossRefGoogle ScholarPubMed
WEISSENHOFER, A. 2005. Structure and vegetation dynamics of four selected one hectare forest plots in the lowland rain forests of the Piedras Blancas National Park (“Regenwald der Österreicher”), Costa Rica, with notes on the vegetation diversity of the Golfo Dulce region. Ph.D thesis, University of Vienna, Austria.Google Scholar
WHITMORE, T. C., BROWN, N. D., SWAINE, M. D., KENNEDY, D., GOODWINBAILEY, C. I. & GONG, W. K. 1993. Use of hemispherical photographs in forest ecology – measurement of gap size and radiation totals in a Bornean tropical rainforest. Journal of Tropical Ecology 9:131151.CrossRefGoogle Scholar
WINKLER, S. 1967. Die epiphyllen Moose der Nebelwälder in El Salvador, C. A. Revue Bryologique et Lichénologique 35:303369.Google Scholar
WU, P.-C., LI, D.-K. & GAO, C.-H. 1987. Light and epiphyllous liverworts in the subtropical evergreen forests of South-Eastern China. Symposia Biologica Hungarica 35:2732.Google Scholar
ZOTZ, G., BÜDEL, B., MEYER, A., ZELLNER, H. & LANGE, O. L. 1997. Water relations and CO2 exchange of tropical bryophytes in a lower montane rain forest in Panama. Botanica Acta 110:917.CrossRefGoogle Scholar