Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T19:47:52.471Z Has data issue: false hasContentIssue false

Nutrient content of bulk precipitation in south-central Java, Indonesia

Published online by Cambridge University Press:  10 July 2009

L. A. Bruijnzeel
Affiliation:
Department of Hydrogeology and Geographical Hydrology, Free University, Faculty of Earth Sciences, PO Box 7161, 1007 MC Amsterdam, The Netherlands

Abstract

The chemical composition of bulk precipitation was studied for a period totalling 18 months between 1975 and 1978 at a high rainfall site in central Java. The following elements were determined: calcium, magnesium, sodium, potassium, nitrate-nitrogen, chlorine, phosphate-phosphorus, silicon, aluminium, iron, manganese and pH. Ammoniacal nitrogen, total nitrogen and sulphate-sulphur were determined, during four weeks in May 1983. Concentrations of all elements rose dramatically during the exceptionally severe dry season of 1977 which may have caused accession rates for some nutrients to be overestimated (i.e. compared to a year with ‘normal’ rainfall) by about 10%. Results are explained in terms of prevailing wind directions and proximity to, or absence of, particular solute sources, such as the ocean, volcanoes or eroding lands.

Most elements exhibited intermediate concentrations when compared with data for other humid tropical locations; sodium and perhaps nitrogen were on the low side and pH on the high side of the spectrum. Annual accession rates at the study site were considerable by pan-tropical standards, mainly as a result of high rainfall totals. Comparing accession rates with 25-year-average nutrient immobilization rates in stemwood of local plantations of Pinus merkusii Jungh. et de Vr. and Agathis dammara Warb. showed atmospheric inputs of magnesium and potassium to be high enough (theoretically) to account for losses of these elements in stemwood removal. Corresponding figures for nitrogen were 90% (Pinus) and 50% (Agathis), and for calcium and phosphorus 60 and 40% respectively (both species).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Anonymous 1972. Regenwasseranalysen aus Zentralamazonien, ausgeführt in Manaus, Amazonas, Brasilien, von Dr. Harald Ungemach. Amazoniana 3:186198.Google Scholar
Bemmelen, R. W. Van 1949. The geology of Indonesia. Government Printing Office, the Hague. 723 pp.Google Scholar
Bernhard-Reversat, F. 1975. Les cycles des macro-éléments. La Terre et la Vie 29:229254.Google Scholar
Bernhard-Reversat, F. 1976. Recherches sur les variations stationnelles des cycles biogéochimiques en forêt ombrophile de Côte d'lvoire. Cahiers ORSTOM, Série pédologie XV: 175189.Google Scholar
Boer, H. J. De, 1950. On the relation between rainfall and altitude in Java, Indonesia. Chronica Naturae 106:424427.Google Scholar
Braak, C. 19211929. Het klimaat van Nederlandsch Indië. Verhandelingen van het Koninklijk Mag-netisch en Meteorologisch Observatorium 8, volumes I and II, Batavia (in Dutch with English summary).Google Scholar
Brasell, H. M. & Gilmour, D. A. 1980. The cation composition of precipitation at four sites in far north Queensland. Australian Journal of Ecology 5:397405.CrossRefGoogle Scholar
Bruijnzeel, L. A. 1983a. Hydrological and biogeochemical aspects of man-made forests in south-central Java, Indonesia. Ph.D. thesis, Free University, Amsterdam. 256 pp.Google Scholar
Bruijnzeel, L. A. 1983b. The chemical mass balance of a small basin in a wet monsoonal environment and the effect of fast-growing plantation forest. I.A.H.S. Publication 141:229239.Google Scholar
Bruijnzeel, L. A. 1984. Immobilization of nutrients in plantation forests of Pinus merkusii and Agathis dammara growing on volcanic soils in central Java, Indonesia. Pp. 1929 in Thajib, A. & Pushparadjah, E. (eds). Soils and nutrition of perennial crops. Malaysian Soil Science Society, Kuala Lumpur.Google Scholar
Bruijnzeel, L. A. 1985. Nutrient content of litterfall in coniferous forest plantations in central Java, Indonesia. Journal of Tropical Ecology 1:353372.CrossRefGoogle Scholar
Bruijnzeel, L. A. 1988. Moist tropical forest nutrient cycling: the hydrological framework. In Proctor, J. (ed.). Mineral nutrients in tropical forest and savanna ecosystems. British Ecological Society Special Publication, Blackwell, Oxford (in press).Google Scholar
Bruijnzeel, L. A. & Wiersum, K. F. 1985. A nutrient balance sheet for Agathis dammara Warb. plantation forest under various management conditions in central Java, Indonesia. Forest Ecology and Management 10:195208.CrossRefGoogle Scholar
Bruin, H. A. R. De, 1977. The accuracy of measuring areal precipitation with a raingauge network. Verslagen en Mededelingen van hydrologisch onderzoek TNO no. 23:1746.Google Scholar
Bullock, J. A. 1974. Raw data presented to IBP Workshop held at Göttingen, Germany.Google Scholar
Chijioke, E. O. 1980. Impact on soils of fast-growing species in lowland humid tropics. FAO Forestry Paper No. 21, Rome. lll pp.Google Scholar
Crozat, G. 1979. Sur l'émission d'un aérosol riche en potassium par la forêt tropicale. Tellus 31:5257.Google Scholar
Dalal, R. C. 1979. Composition of Trinidad rainfall. Water Resources Research 15:12171223.CrossRefGoogle Scholar
Edwards, P. J. 1982. Studies of mineral cycling in a montane rainforest in New Guinea. V. Rates of cycling in throughfall and litterfall. Journal of Ecology 70:807827.CrossRefGoogle Scholar
Eriksson, E. 1960. The yearly circulation of chlorine and sulphur in nature. Part 2. Meteorological, geochemical and pedological implications. Tellus 12:63109.CrossRefGoogle Scholar
Evans, J. 1982. Plantation forestry in the tropics. Clarendon Press, Oxford. 452 pp.Google Scholar
Franken, W. & Leopoldo, P. R. 1984. Hydrology of catchment areas of Central-Amazonian forest streams. Pp. 501519 in Sioli, H. (ed.). The Amazon. Limnology and landscape ecology of a mighty tropical river and its basin. W. Junk, Dordrecht.CrossRefGoogle Scholar
Galloway, J. N. & Likens, G. E. 1978. The collection of precipitation for chemical analysis. Tellus 30:7182.CrossRefGoogle Scholar
Galloway, J. N., Likens, G. E., Keene, W. C. & Miller, J. M. 1982. The composition of precipitation in remote areas of the world. Journal of Geophysical Research 87:87718786.CrossRefGoogle Scholar
Golley, F. B., Mcginnis, J. J., Clements, R. G., Child, G. I. & DUEVER, M. J. 1975. Mineral cycling in a tropical moist forest ecosystem. University of Georgia Press, Athens. 248 pp.Google Scholar
Gorham, E. 1961. Factors influencing the supply of major ions to inland waters, with special reference to the atmosphere. Geological Society of America Bulletin 72:795840.CrossRefGoogle Scholar
Gosz, J. R., BROOKINS, D. G. & MOORE, D. I. 1983. Using strontium isotope ratios to estimate inputs to ecosystems. Bioscience 33:2330.CrossRefGoogle Scholar
Hase, H. & FÖlster, H. 1983. Impact of plantation forestry with teak (Tectona grandis) on the nutrient status of young alluvial soil in west Venezuela. Forest Ecology and Management 6:3357.CrossRefGoogle Scholar
Hem, J. D. 1970. Study and interpretation of the chemical characteristics of natural water. USGS Water Supply Paper No. 1473, 2nd edition. 363 pp.Google Scholar
Hendry, C. D., Berish, C. W. & Edgerton, E. S. 1984. Precipitation chemistry at Turrialba, Costa Rica. Water Resources Research 20:16771684.CrossRefGoogle Scholar
Huttel, C. & Bernhard-Reversat, F. 1975. Biomasse végétale et productivité primaire; cycle de la matière organique. La Terre et la Vie 29:203228.Google Scholar
Jackson, I.J. 1974. Inter-station rainfall correlation under tropical conditions. Catena 1:235256.CrossRefGoogle Scholar
Jordan, C. F. 1985. Nutrient cycling in tropical forest ecosystems. J. Wiley, New York. 190 pp.Google Scholar
Jordan, C. F., Kline, J. R. & Saszcer, D. S. 1972. Relative stability of mineral cycles in forest ecosystems. American Naturalist 106(948):237254.CrossRefGoogle Scholar
Kato, R., Tadaki, Y. & OGAWA, H. 1978. Plant biomass and growth increment studies in Pasoh Forest. Malayan Nature Journal 30:211224.Google Scholar
King, H. B. & Yang, B. Y. 1984. Precipitation and stream water chemistry in Pi-Lu-Chi watersheds. January 1981-December 1982. Bulletin of the Taiwan Forestry Research Institute, Taipei, no. 427, 32 pp. (in Chinese, with English summary).Google Scholar
Lovett, G. M. & Lindbergh, S. E. 1984. Dry deposition and canopy exchange in a mixed oak forest as determined by analysis of throughfall. Journal of Applied Ecology 21:10131027.CrossRefGoogle Scholar
Lundgren, B. 1978. Soil conditions and nutrient cycling under natural and plantation forests in Tan- zanian highlands. Reports in forest ecology and forest soils no. 31. Swedish University of Agricultural Science, Uppsala. 426 pp.Google Scholar
Manokaran, N. 1980. The nutrient contents of precipitation, throughfall and stemflow in a lowland tropical rain forest in peninsular Malaysia. Malaysian Forester 43:266289.Google Scholar
Mayer, R. & Uhlrich, B. 1974. Conclusions on the filtering action of forests from ecosystem analysis. Oecologia Plantarum 9:157168.Google Scholar
Nye, P. H. 1961. Organic matter and nutrient cycles under moist tropical forest. Plant and Soil 13:334346Google Scholar
Probert, M. E. 1976. The composition of rainwater at two sites near Townsville, Qld. Australian Journal of Soil Research 14:397402.CrossRefGoogle Scholar
Proctor, J., Phillips, C., Duff, G. K., Heaney, A. & Robertson, F. M. 1988. Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. II. Some forest processes. Journal of Ecology 76 (in press).Google Scholar
Ridder, T. B., Buishand, T. A., Reijnders, H. F. R., ′T Hart, M. J. & SLANINA, J. 1985. Effects of storage on the composition of main components in rainwater samples. Atmospheric Environment 19:759762.CrossRefGoogle Scholar
Russell, C. E. 1983. Nutrient cycling and productivity of native and plantation forests at Jari Flores- tal. Pará, Brazil Ph.D. thesis. University of Georgia, Athens. 110 pp.Google Scholar
Russell, I. J., Choquette, C. E., Fang, S. L., Dundulis, W. P., Pao, A. A. & Pszenny, A. A. 1981. Forest vegetation as a sink for atmospheric particulates: quantitative studies in rain and dry deposition. Journal of Geophysical Research 86 (C6):52475363.CrossRefGoogle Scholar
Steinhardt, U. (1979). Untersuchungen über den Wasser und Nährstoffhaushalt eines andinen Wolkenwaldes in Venezuela. Göttinger Bodenkundliche Berichte no. 56, Göttingen. 185 pp.Google Scholar
Stewart, H. & Kellman, M. C. 1982. Nutrient accumulation by Pinus caribaea in its native savanna habitat. Plant and Soil 69:105118.CrossRefGoogle Scholar
Tanner, E. V. J. 1977. Mineral cycling in montane rain forests in Jamaica. Ph.D. thesis, University of Cambridge. 289 pp.Google Scholar
Tanner, E. V. J. 1985. Jamaican montane forests: nutrient capital and cost of growth. Journal of Ecology 73:553568.CrossRefGoogle Scholar
Vialard-Goudou, A. & Richard, C. 1956. Etude pluviométrique, physicochimique et économique des eaux de pluie à Saigon (1950–1954). I'Agronomie Tropicale 11:7492.Google Scholar
Villecourt, P. & Roose, E. J. 1978. Charge en azote éléments minéraux manéurs des eaux de pluie, de pluviolessivage et de drainage dans la savane de Lamto (Côte d'lvoire). Revue d'Ecologie et Biologiedu Sol 15:120.Google Scholar
Weaver, P. L., Medina, E., Pool, D., Dugger, K., Gonzales-Liboy, J. & Cuevas, E. 1986. Ecological observations in the dwarf cloud forest of the Luquillo Mountains of Puerto Rico. Biotropica 18:7985.CrossRefGoogle Scholar
Westman, W. E. 1978. Inputs and cycling of mineral nutrients in a coastal subtropical eucalypt forest. Journal of Ecology 66:513531.CrossRefGoogle Scholar
White, E. J. & Turner, F. 1970. A method of estimating income of nutrients in a catch of airborne particles by a woodland canopy. Journal of Applied Ecology 7:441461.CrossRefGoogle Scholar
Whitehead, H. C. & Feth, J. H. 1964. Chemical composition of rain, dry fallout and bulk precipitation at Menlo Park, California, 1957–1959. Journal of Geophysical Research 69:3319–3313.CrossRefGoogle Scholar