Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T19:35:02.766Z Has data issue: false hasContentIssue false

Nutrient dynamics of a Puerto Rican subtropical dry forest

Published online by Cambridge University Press:  10 July 2009

Ariel E. Lugo
Affiliation:
Institute of Tropical Forestry, Southern Forest Experiment Station, USDA Forest Service, PO Box AQ Rio Piedras, PR 00928, Puerto Rico
Peter G. Murphy
Affiliation:
Department of Botany and Plant Pathology, Michigan State University, East Lansing, Michigan 48824, USA

Abstract

The distribution of the nutrients N, P and K in soil and vegetation and their mobility through litterfall and decomposition in mature and successional stands of a subtropical dry forest were studied in Guánica, Puerto Rico. Soils of the Guánica forest have high total amounts of N (9100 kg/ha), P (1820 kg/ha), and K (7460 kg/ha). However, high extractable Ca (>4000 mg/g) and pH (> 7–8) may explain why only 1.3 and 25% of the total P and K, respectively, were extractable. Total ecosystem storage of N, P and K was 10,300, 1900 and 7700 kg/ha, respectively, of which vegetation stored only 10, 2 and 3%, respectively. Litterfall returned 26, 18 and 180% per year of the N, P and K stored in the ground litter compartment. Trees retranslocated about 30 and 65% of the N and P required to satisfy aboveground net primary production and immobilized P in dead roots. Slow leaf decomposition (7.3 yr for 95% decomposition) released K faster than mass, P as fast as mass, and ash and N slower than mass. The use efficiency of P by litterfall was high compared with other tropical forests, while that of N and K was similar to other tropical and temperate forests. Cutting and regrowth of vegetation resulted in differences in the nutrient concentration in litterfall and nutrient use efficiency of successional vegetation.

Extracto

Se estudió la distributión de los nutrientes N, P y K en suelos y vegetación y su mobilidad en la caída y descomposición de hojarasca en rodales maduros y sucesionales del bosque subtropical seco en Guánica, Puerto Rico. Los suelos almacenan altas cantidades de N (9100 kg/ha), P (1820 kg/ha), y K (7460). Altas cantidades de Ca extractable (> 4000 mg/g) y alto pH (> 7–8) explican porqué solamente el 1.3 y 25% del total de P y K, respectivamente eran extractables. El almacenaje total de N, P y K en el ecosistema fue 10,300, 1900 y 7700 kg/ha, respectivamente, del cual la vegetación almacenaba el 10, 2 y 3%, respectivamente. La caída de hojarasca retornó el 26, 18 y 180%/año del N, P y K almacenado en la hojarasca del bosque. Los arboles retranslocaron alrededor del 30 y 65% del N y P requerido para satisfacer la producción primaria neta sobre tierra e inmobilizaron el P en las raíces muertas. La descomposición lenta de hojas (7.3 años para el 95% de la descomposición liberó K más rápidamente que masa, P tan rápidamente como masa y ceniza y N más lentamente que masa. La eficiencia de uso de P por la caída de hojarasca fue alta al compararse con otros bosques tropicales, mientras que de N y K fue similar a la de otros bosques tropicales y templados. La tala y recrecimiento de vegetación resultó en diferencias en la concentratión de nutrientes en la hojarasca y en la eficiencia de uso de nutrientes de la vegetación sucesional.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

American Public Health Association, American Water Works Association, and Water Pollution Control Federation. 1976. Standard methods for the examination of water and waste water. (14th edition). American Public Health Association, Washington, DC.Google Scholar
Arnason, J. T. & Lambert, J. D. H. 1982. Nitrogen cycling in the seasonally dry forest zone of Belize, Central America. Plant and Soil 67:333342.Google Scholar
Beadle, N. C. W. 1966. Soil phosphate and its role in molding segments of the Australian flora and vegetation with special reference to xeromorphy and sclerophylly. Ecology 47:9921007.CrossRefGoogle Scholar
Black, C. A. (ed.). 1965. Methods of soil analysis. Agronomy 9, Parts 1 and 2. American Society of Agronomy Inc. and Soil Science Society of America, Madison, Wisconsin.CrossRefGoogle Scholar
Brady, N. C. 1974. The nature and properties of soils. Macmillan, New York.Google Scholar
Day, P. R. 1965. Particle fractionation and particle-size analysis. Pp. 562–556 in Black, C. A. (ed.). Methods of soil analysis. 1. Agronomy mimeograph No. 9. American Society of Agronomy Inc. and Soil Science Society of America, Madison, Wisconsin.Google Scholar
Edwards, P. J. & Grubb, P. J. 1982. Studies of mineral cycling in a montane rain forest in New Guinea. IV Soil characteristics and the division of mineral elements between the vegetation and soil. Journal of Ecology 70:649666.Google Scholar
Ewel, J. 1970. Experiments in arresting succession. PhD dissertation, University of North Carolina at Chapel Hill, North Carolina. 248 pages.Google Scholar
Ewel, J., Berish, C., Brown, B., Price, N. & Raich, J. 1981. Slash and burn impacts on a Costa Rican wet forest site. Ecology 62:816829.Google Scholar
Forsythe, W. 1980. Fisica de suelos. Manual de laboratorio. Instituto Interamericano de Ciencias Agricolas, San Jose, Costa Rica. 212 pages.Google Scholar
Frankie, G. W., Baker, H. G. & Opler, P. A. 1974. Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. Journal of Ecology 62:881919.Google Scholar
Frangi, J. L. & Lugo, A. E. 1985. Ecosystem dynamics of a subtropical floodplain forest. Ecological Monographs 55:351369.CrossRefGoogle Scholar
Golley, F. B., McGinnis, J. T., Clements, R. G.Child, G. I. & Duever, M. J. 1975. Mineral cycling in a tropical moist forest ecosystem. University of Georgia Press, Athens, Georgia.Google Scholar
Grubb, P. J. & Edwards, P. J. 1982. Studies of mineral cycling in a montane rain forest in New Guinea. III The distribution of mineral elements in the aboveground material. Journal of Ecology 70:623648.Google Scholar
Jordan, C. F., Caskey, W., Escalante, G., Herrera, R., Montagnini, F., Todd, R. & Uhl, C. 1982. The nitrogen cycling in a ‘terra firme’ rain forest on oxisol in the Amazon territory of Venezuela. Plant and Soil 67:325332.Google Scholar
Little, E. L. & Wadsworth, F. H. 1964. Common trees of Puero Rico and the Virgin Islands. Agriculture Handbook No. 249, USDA Forest Service, Washington, DC.Google Scholar
Little, E. L., Woodbury, R. O. & Wadsworth, F. H. 1974. Trees of Puerto Rico and the Virgin Islands. Agriculture Handbook No. 449, USDA Forest Service, Washington, DC.Google Scholar
Loveless, A. R. 1961. A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Annals of Botany (ns) 25(98):168184.CrossRefGoogle Scholar
Loveless, A. R. 1962. Further evidence to support a nutritional interpretation of sclerophylly. Annals of Botany (ns) 26(4):551561.Google Scholar
Lugo, A. E., Gonzalez-Liboy, J. A., Cintron, B. & Dugger, K. 1978. Structure, productivity, and transpiration of a subtropical dry forest in Puerto Rico. Biotropica 10:278291.CrossRefGoogle Scholar
Margaris, N. S., Adamandiadou, S., Siafaca, L. & Diamantopoulos, J. 1984. Nitrogen 03and phosphorus content in plant species of Mediterranean ecosystems in Greece. Vegetatio 55:2935.Google Scholar
Medina, E. 1980. Ecology of tropical American savannas: an ecophysiological approach. Pp. 297319 in Morris, D. R. (ed.). Human ecology in savanna environments. Academic Press, London.Google Scholar
Medina, E. 1984. Nutrient balance and physiological processes at the leaf level. Pp. 139154 in Medina, E., Mooney, H. A. & Vazquez-Yanes, C. (eds). Physiological ecology of plants of the wet tropics. Dr W. Junk Publ., The Hague.CrossRefGoogle Scholar
Monroe, W. H. 1976. The karst landforms of Puerto Rico. US Geological Survey Professional Paper No. 899, US Government Printing Office, Washington DC.Google Scholar
Murphy, P. G. & Lugo, A. E. 1986. Structure and biomass of a subtropical dry forest in Puerto Rico. Biotropica (in press).CrossRefGoogle Scholar
Odum, H. T. & Pigeon, R. F. (eds). 1970. A tropical rain forest. US Atomic Energy Commission, National Information and Technical Services, Springfield, Virginia.Google Scholar
Page, A. L., Miller, R. H. & Keeney, D. R. (eds). 1982. Methods of soil analysis. Agronomy No. 9, Part 2. (2nd edition). American Society of Agronomy Inc. and Soil Science Society of America, Madison, Wisconsin.Google Scholar
Rodin, L. E. & Bazilevich, N. I. 1967. Production and mineral cycling in terrestrial vegetation. Oliver and Boyd, Edinburgh.Google Scholar
Sobrado, M. A. & Medina, E. 1980. General morphology, anatomical structure, and nutrient content of sclerophyllous leaves of the ‘Bana’ vegetation of Amazonas. Oecologia (BerL) 45:341345.Google Scholar
Swift, M. J., Heal, O. W. & Anderson, J. M. 1979. Decomposition in terrestrial ecosystems. University of California Press, Berkeley, California.Google Scholar
Vitousek, P. M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285298.CrossRefGoogle Scholar