Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T08:14:20.221Z Has data issue: false hasContentIssue false

Origin of trunk damage in West African savanna trees: the interaction of fire and termites

Published online by Cambridge University Press:  10 March 2011

A. B. N'Dri*
Affiliation:
Laboratoire de Biogéochimie et Ecologie des Milieux Continentaux (BIOEMCO-UMR 7618 – Université Pierre et Marie Curie (Paris VI), Centre National de la Recherche Scientifique) Ecole Normale Supérieure, 46 rue d'Ulm 75230 Paris Cedex 05, France Université d'Abobo-Adjamé, UFR des Sciences de la Nature, 02 BP 801 Abidjan 02, Côte d'Ivoire
J. Gignoux
Affiliation:
Laboratoire de Biogéochimie et Ecologie des Milieux Continentaux (BIOEMCO-UMR 7618 – Université Pierre et Marie Curie (Paris VI), Centre National de la Recherche Scientifique) Ecole Normale Supérieure, 46 rue d'Ulm 75230 Paris Cedex 05, France
S. Konaté
Affiliation:
Université d'Abobo-Adjamé, UFR des Sciences de la Nature, 02 BP 801 Abidjan 02, Côte d'Ivoire
A. Dembélé
Affiliation:
Université d'Abobo-Adjamé, UFR des Sciences de la Nature, 02 BP 801 Abidjan 02, Côte d'Ivoire
D. Aïdara
Affiliation:
Université d'Abobo-Adjamé, UFR des Sciences de la Nature, 02 BP 801 Abidjan 02, Côte d'Ivoire
*
1Corresponding author. Email: gitadib@yahoo.fr/ndri@biologie.ens.fr

Abstract:

Two main types of hollow tree are frequently found in savannas: trees with external splits (externally damaged trees), and trees with no or little visible external damage, but with their entire core removed (internally damaged or ‘piped’ trees). As this may affect trunk mechanical resistance and tree survivorship, we studied the incidence of these two types of cavity in relation to two possible causal agents, fire and termites, in a West African savanna. Overall, the proportion of damaged adult trees (height >2 m) reached 36%, and up to 84% for Crossopteryx febrifuga. In this species, almost all (93%) damaged individuals showed signs of digging by fungus-grower and wood-feeder termites. External damage was more frequent in the more fire-prone shrubby savanna, suggesting that while termites are responsible for the piping, fire is responsible for the later opening of the trunk. Trees growing in the more fire-prone savanna tended to reach significantly smaller sizes, both in height and basal diameter, than in the less intensely burnt woody savanna. There was also evidence that piped trees were taller than externally damaged trees. This strongly suggests that fire causes an increased mortality of adult trees through lateral opening of the trunks causing later breakage.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AKPESSE, A., KOUASSI, P. K., TANO, Y. & LEPAGE, M. 2008. Impact des termites dans les champs paysans de riz et de maïs en savane sub-soudanienne (Booro Borotou, Côte-d'Ivoire). Sciences & Nature 5: 121131.CrossRefGoogle Scholar
APOLINARIO, F. E. & MARTIUS, C. 2004. Ecological role of termites (Insecta, Isoptera) in tree trunks in central Amazonian rain forests. Forest Ecology and Managment 194: 2328.CrossRefGoogle Scholar
BANDEIRA, A. G. 1993. Nota sobre Coptotermes (Isoptera, Rhinotermitinae), praga em floresta nativada Amazônia. Brasil. Revista Brasileira de Entomologia 37: 189191.Google Scholar
BOND, W. J. & KEELEY, J. E. 2005. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends in Ecology and Evolution 20: 387394.CrossRefGoogle ScholarPubMed
BOND, W. J. & MIDGLEY, J. J. 2001. Ecology of sprouting in woody plants: the persistence niche. Trends in Ecology and Evolution 16: 4551.CrossRefGoogle ScholarPubMed
BOUILLON, A. & MATHOT, G. 1965. Quel est ce termite Africain? Université de Léopoldville, Léopoldville. 115 pp.Google Scholar
BOUILLON, A. & MATHOT, G. 1966. Quel est ce termite africain? Supplément 1. Université de Lovanium, Kinshasa. 23 pp.Google Scholar
BOUILLON, A. & MATHOT, G. 1971. Quel est ce termite africain? Supplément N° 2. Université Nationale du Zaïre, Kinshasa. 48 pp.Google Scholar
CHOOSAI, C., MATHIEU, J., HANBOONSONG, Y. & JOUQUET, P. 2009. Termite mounds and dykes are biodiversity refuges in paddy fields in north-eastern Thailand. Environmental Conservation 36: 7179.CrossRefGoogle Scholar
CONSTANTINO, R. 2002. The pest termites of South America: taxonomy, distribution and status. Journal of Applied Entomology 126: 355365.CrossRefGoogle Scholar
COWIE, R. H., LOGAN, J. W. M. & WOOD, T. G. 1989. Termite (Isoptera) damage and control in tropical forestry with special reference to Africa and Indo-Malaysia. Bulletin of Entomological Research 79: 173184.CrossRefGoogle Scholar
DELIGNE, J. 1966. Caractères adaptatifs au régime alimentaire dans la mandibule des termites (Insectes Isoptères). Comptes-rendus de l'Académie des Sciences, Paris 263: 13231325.Google Scholar
DOSSO, K., KONATÉ, S., AIDARA, D. & LINSENMAIR, K. E. 2010. Termite diversity and abundance across fire-induced habitat variability in a tropical moist savanna (Lamto, Central Côte d'Ivoire). Journal of Tropical Ecology 26: 323334.CrossRefGoogle Scholar
FOWLER, H. G. & FORTI, L. C. 1990. Status and prospects of termite problems and control in Brazil. Sociobiology 17: 4556.Google Scholar
FOX, R. E. & CLARK, N. B. 1972. The incidence of termites in eucalypt of the Darwin area. Australian Forestry Research 5: 2636.Google Scholar
GAUTIER, L. 1990. Contact forêt-savane en Côte d'Ivoire centrale: évolution du recouvrement ligneux des savanes de la réserve de Lamto (sud du V baoulé). Candollea 45: 627641.Google Scholar
GIGNOUX, J., CLOBERT, J. & MENAUT, J. C. 1997. Alternative fire resistance strategies in savanna trees. Oecologia 110: 576583.CrossRefGoogle ScholarPubMed
GILL, A. M. 1974. Toward an understanding of fire-scar formation: field observation and laboratory simulation. Forest Science 20: 198205.Google Scholar
GONÇALVES, T. T., DESOUZA, O., REIS, R. J. & RIBEIRO, S. P. 2005. Effect of tree size and growth form on the presence and activity of arboreal termites (Insecta: Isoptera) in the Atlantic rain forest. Sociobiology 46: 212.Google Scholar
GOULD, M. S., LOWE, A. J. & CLARKE, G. P. 1993. The frequency of termite (Isoptera) damage to tree species in Namakutwa Forest, Tanzania. Sociobiology 23: 189198.Google Scholar
GRASSÉ, P. P. 1937. Recherche sur la systématique et la biologie des termites de l'Afrique Occidentale Française. Première partie, Protermitidae, Mesotermitidae, Metatermitidae (Termitinae). Annales de la Société Entomologique de France 106: 1100.CrossRefGoogle Scholar
GRASSÉ, P. P. 1986. Comportement, sociabilité, écologie, évolution, systématique. Termitologia. Tome III. Masson, Paris. 715 pp.Google Scholar
HAN, S. H. 2000. Dégâts causés par les termites sur les bâtiments dans la région de Dakar au sénégal. Actes des Colloques Insectes Sociaux 13: 6164.Google Scholar
HOLDO, R. M. 2003. Woody plant damage by African elephants in relation to leaf nutrients in western Zimbabwe. Journal of Tropical Ecology 19: 189196.CrossRefGoogle Scholar
JONES, D. T. & EGGLETON, P. 2000. Sampling termite assemblages in tropical forests: testing a rapid biodiversity assessment protocol. Journal of Applied Ecology 37: 191203.CrossRefGoogle Scholar
JOSENS, G. 1972. Etudes biologiques et écologiques des termites (Isoptera) de la savane de Lamto. Thèse de doctorat de l'Université Libre de Bruxelles. 262 pp.Google Scholar
JOUQUET, P., LEPAGE, M. & VELDE, B. 2002. Termite soil preferences and particle selections: strategies related to ecological requirements. Insectes sociaux 49: 17.CrossRefGoogle Scholar
JOUQUET, P., DAUBER, J., LAGERLÖF, J., LAVELLE, P. & LEPAGE, M. 2006. Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Applied Soil Ecology 32: 153164.CrossRefGoogle Scholar
JOUQUET, P., BOTTINELLI, N., LATA, J. C., MORA, P. & CAQUINEAU, S. 2007. Role of the fungus-growing termite Pseudacanthotermes spiniger (Isoptera, Macrotermitinae) in the dynamic of clay and soil organic matter content. An experimental analysis. Geoderma 139: 127133.CrossRefGoogle Scholar
KOIZUMI, A. & HIRAI, T. 2006. Evaluation of the section modulus for tree-stem cross sections of irregular shape. Journal of Wood Science 52: 213219.CrossRefGoogle Scholar
KONATÉ, S. 1998. Structure, dynamique et rôle des buttes termitiques dans le fonctionnement d'une savane préforestière (Lamto, Côte d'Ivoire): le termite champignonniste Odontotermes comme ingénieur de l'écosystème. Thèse de doctorat de l'Université de Paris 6, France. 252 pp.Google Scholar
KONATÉ, S., LE ROUX, X., TESSIER, D. & LEPAGE, M. 1999. Influence of large termitaria on soil characteristics, soil water regime, and tree leaf shedding pattern in a West African savanna. Plant and Soil 206: 4760.CrossRefGoogle Scholar
LAMOTTE, M. & TIREFORD, J. 1988. Le climat de la savane de Lamto (Côte d'ivoire) et sa place dans les climats de l'ouest africain. Travaux des Chercheurs de Lamto (RCI) 8: 1146.Google Scholar
LEPAGE, M., ABBADIE, L., JOSENS, G., KONATÉ, S. & LAVELLE, P. 2006. Perturbations of soil carbon dynamics by soil fauna. Pp. 235251 in Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. (eds.). Lamto: structure, functioning and dynamics of a savanna ecosystem. Springer Verlag, New York.CrossRefGoogle Scholar
LONSDALE, W. M. & BRAITHWAITE, R. W. 1991. Assessing the effects of fire on vegetation in tropical savannas. Australian Journal of Ecology 16: 363374.CrossRefGoogle Scholar
MATTHECK, C. & KUBLER, H. 1995. Wood – the internal optimization of trees. Springer Verlag, Berlin. 129 pp.Google Scholar
MATTHECK, C., BETHGE, K. & WEST, P. W. 1994. Breakage of hollow tree stems. Trees – Structure and Function 9: 4750.CrossRefGoogle Scholar
MENAUT, J. C. & CÉSAR, J. 1979. Structure and primary productivity of Lamto savannas (Ivory Coast). Ecology 60: 11971210.CrossRefGoogle Scholar
MONNIER, Y. 1968. Les effets des feux de brousse sur une savane préforestière de Côte d'Ivoire. Etudes Eburnéennes 9: 1260.Google Scholar
MORA, P., MIAMBI, E., JIMÉNEZ, J. J., DECAËNS, T. & ROULAND, C. 2005. Functional complement of biogenic structures produced by earthworms, termites and ants in the neotropical savannas. Soil Biology and Biochemistry 37: 10431048.CrossRefGoogle Scholar
MORDELET, P. & MENAUT, J. C. 1995. Influence of trees on above-ground production dynamics of grasses in a humid savanna. Journal of Vegetation Science 6: 223228.CrossRefGoogle Scholar
NOGUEIRA, S. & SOUZA, A. 1987. Cupins do cerne, Coptotermes testaceus (Isoptera, Rhinotermitidae), uma praga séria para eucaliptos nos cerrados. Brasil Florestal 6: 729.Google Scholar
PRIOR, L. D., MURPHY, B. P. & RUSSELL-SMITH, J. 2009. Environmental and demographic correlates of tree recruitment and mortality in north Australian savannas. Forest Ecology and Management 257: 6674.CrossRefGoogle Scholar
SANDS, W. A. 1998. The identification of worker castes of termite genera from soils of Africa and the Middle East. CAB International, New York. 500 pp.Google Scholar
TRAORÉ, S., TIGABU, M., OUEDRAOGO, S. J., BOUSSIM, J. I., GUINKO, S. & LEPAGE, M. 2008. Macrotermes mounds as sites for tree regeneration in a Sudanian woodland (Burkina Faso). Plant Ecology 198: 285295.CrossRefGoogle Scholar
TUNSTALL, B. R., WALKER, J. & GILL, A. M. 1976. Temperature distribution around synthetic trees during grass fires. Forest Science 22: 269276.Google Scholar
WEBB, G. C. 1961. Keys of the genera of the African termites adapted from revision Der Termiten Afrikas of Sjoestedt. Ibadan University Press, Ibadan. 35 pp.Google Scholar
WERNER, P. A. & PRIOR, L. D. 2007. Tree-piping termites and growth and survival of host trees in savanna woodland of north Australia. Journal of Tropical Ecology 23: 611622.CrossRefGoogle Scholar
WERNER, P. A., PRIOR, L. D. & FORNER, J. 2008. Growth and survival of termite-piped Eucalyptus tetrodonta and E. miniata in northern Australia: implications for harvest of trees for didgeridoos. Forest Ecology and Management 256: 328334.CrossRefGoogle Scholar
WHITFORD, K. R. 2002. Hollows in jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) trees. I. Hollow sizes, tree attributes and ages. Forest Ecology and Management 160: 201214.CrossRefGoogle Scholar
WHITFORD, K. R. & WILLIAMS, M. R. 2001. Survival of jarrah (Eucalyptus marginata Sm.) and marri (Corymbia calophylla Lindl.) habitat trees retained after logging. Forest Ecology and Management 146: 181197.CrossRefGoogle Scholar
WHITFORD, K. D. & WILLIAMS, M. R. 2002. Hollows in jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) trees. II. Selecting trees to retain for hollow dependent fauna. Forest Ecology and Management 160: 215232.CrossRefGoogle Scholar
WILLIAMS, R. J., COOK, G. D., GILL, A. M. & MOORE, P. H. R. 1999. Fire regime, fire intensity and tree survival in a tropical savanna in northern Australia. Australian Journal of Ecology 24: 5059.CrossRefGoogle Scholar
WONG, N. & LEE, C. 2010. Influence of different substrate moistures on wood consumption and movement patterns of Microcerotermes crassus and Coptotermes gestroi (Blattodea: Termitidae, Rhinotermitidae). Journal of Economic Entomology 103: 437442.CrossRefGoogle ScholarPubMed