Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T14:14:54.841Z Has data issue: false hasContentIssue false

Perception of a fragmented landscape by neotropical marsupials: effects of body mass and environmental variables

Published online by Cambridge University Press:  01 January 2009

Germán Forero-Medina*
Affiliation:
Laboratório de Vertebrados, Departamento de Ecologia, Instituto de Biologia – CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, CEP: 21941-590
Marcus Vinícius Vieira
Affiliation:
Laboratório de Vertebrados, Departamento de Ecologia, Instituto de Biologia – CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, CEP: 21941-590
*
1Corresponding author. Present address: Nicholas School of the Environment, Duke University, Durham, NC 27708. Email: german.forero@duke.edu

Abstract:

Perceptual range is used as a measure of the ability of animals to perceive the landscape, and can be used to infer functional connectivity between habitat patches such as forest remnants. A relationship of perceptual range with body mass was proposed by Mech and Zollner, but effects of life-history traits and environmental conditions were also acknowledged. We evaluated perceptual ranges and the influence of body mass, wind speed and direction, and grass height in four marsupial species of the Atlantic Forest of south-eastern Brazil. Release experiments were conducted and orientation towards the forest was determined using the spool-and-line technique. In 111 animals released, Didelphis aurita had the highest perceptual range (200 m), followed by Philander frenatus and Micoureus paraguayanus (100 m), and by Marmosops incanus (< 100 m). None of the species presented homing behaviour, and there was no difference in orientation abilities between sexes. Perceptual range was overestimated based on the equations of Mech and Zollner, but species were ordered in perceptual range according to their body size. Distance to the forest was a common determinant of the orientation in P. frenatus and M. paraguayanus, but grass height and wind direction were also important. Orientation of Didelphis aurita was determined by wind direction, showing anemotactic behaviour. Body mass is likely to affect perceptual ranges in didelphid marsupials, but only in interspecific comparisons. Within a species perception depends on the environmental context. Variables other than distance must be considered to estimate functional connectivity of the landscape based on perceptual range.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AHL, A. S. 1987. Relationship of vibrissal length and habits in the Sciuridae. Journal of Mammalogy 68:848853.Google Scholar
BALKOVSKY, E. & SHRAIMAN, B. I. 2002. Olfactory search at high Reynolds number. Proceedings of the National Academy of Sciences, USA 99:1258912593.Google Scholar
BATSCHELET, E. 1981. Circular statistics in biology. Academic Press, New York. 371 pp.Google Scholar
BURNHAM, K. P. & ANDERSON, D. R. 2002. Model selection and multimodel inference: a practical information-theoretic approach. (Second edition). Springer-Verlag, New York. 496 pp.Google Scholar
CABRAL, D. C. & FISZON, J. T. 2004. Padrões socio-espacias de desflorestamento e suas implicações para a fragmentação florestal: estudo de caso na Bacia do Rio Macacu, RJ. Scientia Forestalis 66:1324.Google Scholar
CÁCERES, N. C. 2003. Use of the space by the opossum Didelphis aurita Wied-Newied (Mammalia, Marsupialia) in a mixed forest fragment of southern Brazil. Revista Brasileira de Zooogía 20:315322.Google Scholar
CALDWELL, I. R. & NAMS, V. O. 2006. A compass without a map: tortuosity and orientation of eastern painted turtles (Chrysemis picta picta) released in unfamiliar territory. Canadian Journal of Zoology 84:11291137.Google Scholar
CUNHA, A. A. & VIEIRA, M. V. 2002. Support diameter, incline, and vertical movements of four didelphid marsupials in the Atlantic forest of Brazil. Journal of Zoology 258:419426.CrossRefGoogle Scholar
DERGE, K. L. & YAHNER, R. H. 2000. Ecology of sympatric fox squirrels (Sciurus niger) and gray squirrels (S. carolinensis) at forest-farmland interfaces of Pennsylvania. American Midland Naturalist 143:355369.CrossRefGoogle Scholar
EMMONS, L. H. & FEER, F. 1997. Neotropical forest mammals: a field guide. (Second edition). University of Chicago Press, Chicago. 396 pp.Google Scholar
FAHRIG, L. & PALOHEIMO, J. 1988. Determinants of local population size in patchy habitats. Theoretical Population Biology 34:194213.Google Scholar
FERNANDEZ, F. A. S. & PIRES, A. 2006. Perspectivas para a sobrevivência dos marsupiais brasileiros em fragmentos florestais: o que sabemos o que ainda precisamos aprender? Pp. 191201 in Cáceres, N. C. &. Monteiro-Filho, L. A. (eds). Os marsupiais do Brasil. Editora UFMS, Campo Grande.Google Scholar
FISHER, N. I. 1993. Statistical analysis of circular data. Cambridge University Press, New York. 277 pp.CrossRefGoogle Scholar
FORERO-MEDINA, G. & VIEIRA, M. V. 2007. Método para estimar a capacidade perceptual e mecanismos de orientação em pequenos mamíferos. Boletim da Sociedade Brasileira de Mastozoologia 49:13.Google Scholar
GENTILE, R. & CERQUEIRA, R. 1995. Movement patterns of five species of small mammals in a Brazilian restinga. Journal of Tropical Ecology 11:671677.CrossRefGoogle Scholar
GENTILE, R., D'ANDREA, P. S. & CERQUEIRA, R. 1997. Home ranges of Philander frenata and Akodon cursor in a Brazilian restinga (coastal shrubland). Mastozoologia Neotropical 4:105112.Google Scholar
GILLIS, E. A. & NAMS, V. O. 1998. How red-backed voles find habitat patches. Canadian Journal of Zoology 76:791794.CrossRefGoogle Scholar
GOODWIN, B. J. 2003. Is landscape connectivity a dependent or independent variable? Landscape Ecology 18:687699.Google Scholar
GOODWIN, B. J., BENDER, D. J., CONTRERAS, T. A., FAHRIG, L. & WEGNER, J. F. 1999. Testing for habitat detection distances using orientation data. Oikos 84:160163.Google Scholar
GRELLE, C. E. 2003. Forest structure and vertical stratification of small mammals in a secondary Atlantic Forest, southeastern Brazil. Studies on Neotropical Fauna and Environment 38:8185.CrossRefGoogle Scholar
LIMA, S. L. & ZOLLNER, P. A. 1996. Towards a behavioral ecology of ecological landscapes. Trends in Ecology and Evolution 11:131135.Google Scholar
LIRA, P. K. 2005. Padrões espaciais de marsupiais em uma paisagem fragmentada de Mata Atlântica no estado do Rio de Janeiro. M.Sc. Dissertation, Universidade Federaldo Rio de Janeiro.Google Scholar
LIRA, P. K., FERNANDEZ, F. A. S., CARLOS, H. S. A. & CURZIO, P. L. 2007. Use of a fragmented landscape by three species of opossum in south-eastern Brazil. Journal of Tropical Ecology 23:427435.Google Scholar
LORETTO, D. & VIEIRA, M. V. 2005. The effects of reproductive and climatic seasons on movements in the black-eared opossum (Didelphis aurita Wied-Neuwied, 1826). Journal of Mammalogy 86:287293.Google Scholar
MECH, S. G. & ZOLLNER, P. A. 2002. Using body size to predict perceptual range. Oikos 98:4752.Google Scholar
OLDEN, J. D., SCHOOLEY, R. L., MONROE, J. B. & POFF, N. L. 2004. Context-dependent perceptual range and their relevance to animal movements in landscapes. Journal of Animal Ecology 73:11901194.CrossRefGoogle Scholar
PARDINI, R. 2004. Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodiversity and Conservation 13:25672586.CrossRefGoogle Scholar
PASSAMANI, M. 1995. Vertical stratification of small mammals in Atlantic hill forest. Mammalia 59:276279.Google Scholar
PASSAMANI, M. 2003. O efeito da fragmentação da Mata Atlântica Serrana sobre a comunidade de pequenos mamíferos de Santa Teresa, Espirito Santo. Ph.D. Thesis, Universidade Federal do Rio de Janeiro.Google Scholar
PIRES, A. S., LIRA, P., FERNANDEZ, F. A. S., SCHITTINI, G. M. & OLIVEIRA, L. C. 2002. Frequency of movements of small mammals among Atlantic coastal forest fragments in Brazil. Biological Conservation 108:229237.Google Scholar
SCHOOLEY, R. L. & BRANCH, L. C. 2005. Limited perceptual range and anemotaxis in marsh rice rats Oryzomys palustris. Acta Theriologica 50:5966.CrossRefGoogle Scholar
SCHOOLEY, R. L. & WIENS, J. A. 2003. Finding habitat patches and directional connectivity. Oikos 102:559570.Google Scholar
STEINWALD, M. C., SWANSON, B. J. & WASER, P. M. 2006. Effects of spool-and-line tracking on small desert mammals. The Southwestern Naturalist 51:7178.Google Scholar
SUNQUIST, M. E., AUSTAD, S. N. & SUNQUIST, F. 1987. Movement patterns and home range in the common opposum (Didelphis marsupialis). Journal of Mammalogy 68:173176.Google Scholar
TAYLOR, P. D., FAHRIG, L., HENEIN, K. & MERRIAM, G. 1993. Connectivity is a vital element of landscape structure. Oikos 68:571573.CrossRefGoogle Scholar
TELFORD, S. R., GONZALES, J. & TONN, J. 1979. Densidad, área de distribución y movimiento de poblaciones de Didelphis marsupialis en los altos llanos de Venezuela. Boletín de la Dirección de Malariología y Saneamiento Ambiental 19:119127.Google Scholar
THORSON, J. M., MORGAN, R. A., BROWN, J. S. & NORMAN, J. E. 1998. Direct and indirect cues of predatory risk and patch use by fox squirrels and thirteen-lined ground squirrels. Behavioral Ecology 9:151157.CrossRefGoogle Scholar
VIEIRA, E. M. & MONTEIRO-FILHO, E. L. A. 2003. Vertical stratification of small mammals in the Atlantic rain forest of south-eastern Brazil. Journal of Tropical Ecology 19:501507.CrossRefGoogle Scholar
VIEIRA, M. V. & CUNHA, A. A. (2008). Scaling body mass and use of space in three species of marsupials in the Atlantic Forest of Brazil. Austral Ecology 33:872–879.Google Scholar
VIEIRA, M. V. & LORETTO, D. 2004. Protocolo para estudo de movimentos animais com carretel de rastreamento. Boletim da Sociedade Brasileira de Mastozoologia 41:23.Google Scholar
YEOMANS, R. S. 1995. Water-finding in adult turtles: random search or oriented behaviour? Animal Behaviour 49:977987.CrossRefGoogle Scholar
ZAR, J. H. 1984. Biostatistical analysis. (Second edition). Prentice-Hall Inc., New Jersey. 718 pp.Google Scholar
ZOLLNER, P. A. 2000. Comparing the landscape level perceptual abilities of forest sciurids in fragmented agricultural landscapes. Landscape Ecology 15:523533.Google Scholar
ZOLLNER, P. A. & LIMA, S. L. 1997. Landscape-level perceptual abilities in white-footed mice: perceptual range and the detection of forested habitat. Oikos 80:5160.CrossRefGoogle Scholar
ZOLLNER, P. A. & LIMA, S. L. 1999a. Illumination and the perception of remote habitat patches by white-footed mice. Animal Behaviour 58:489500.Google Scholar
ZOLLNER, P. A. & LIMA, S. L. 1999b. Search strategies for landscape-level interpatch movements. Ecology 80:10191030.Google Scholar