Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T17:40:36.707Z Has data issue: false hasContentIssue false

Reproductive success of Cardiopetalum calophyllum (Annonaceae) treelets in fragments of Brazilian savanna

Published online by Cambridge University Press:  12 April 2012

Marcos Antônio da Silva Elias
Affiliation:
Departamento de Biologia Geral, ICB, Universidade Federal de Goiás, Goiânia 74.001-970, Goiás, Brazil
Edivani Villaron Franceschinelli*
Affiliation:
Departamento de Biologia Geral, ICB, Universidade Federal de Goiás, Goiânia 74.001-970, Goiás, Brazil
Leandro Juen
Affiliation:
Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correia, No. 1 Bairro Guama, 66.075-110, Belém, Pará, Brazil
Fábio Julio Alves Borges
Affiliation:
Licenciatura em Biologia a Distância, ICB, Universidade Federal de Goiás, Goiânia 74.001–970, Goiás, Brazil
Glalko Machado Ferreira
Affiliation:
Cadastro Territorial Multifinalitário, Prefeitura Municipal de Hidrolândia, Goiás, Brazil
Fábio Martins Vilar de Carvalho
Affiliation:
Universidade Federal de Goiás, Campus Jataí, BR-364 km 192, Jataí 75801–615, Goiás, Brazil
*
1Corresponding author. Email: edivanif@gmail.com

Extract

Habitat fragmentation may affect essential ecosystem processes, such as pollination, causing negative effects on plants and pollinators (Aizen & Feinsinger 1994, Jennersten 1988, Lennartsson 2002, Liow et al. 2001, Murcia 1996). Effects of fragmentation on plant–pollinator interaction were evaluated in several studies (Aguirre & Dirzo 2008, Dauber et al. 2010, Dick 2001, Donaldson et al. 2002, Dunley et al. 2009, Fuchs et al. 2003, Ghazoul & McLeish 2001, Lopes & Buzato 2007). The Brazilian savanna, called cerrado, has been fragmented due in large part to extensive agricultural activity (Carvalho et al. 2009). Studies with the main objective of evaluating the influence of fragment size on ecosystem processes and on plant reproductive output has not been determined in cerrado. The plants of this type of vegetation seem to produce generally low number of fruits per flower (Gribel & Hay 1993, Munin et al. 2008, Ortiz et al. 2003). This may be due to the low soil fertility (Franco 2002, Haridasan 2000). But the recent fragmentation of this biome may reduce even more their plant reproductive success because it can increase the effect of pollination limitation and inbreeding caused by the habitat isolation and degradation.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AGUILAR, R., ASHWORTH, L., GALETTO, L. & AIZEN, M. A. 2006. Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecology Letters 9:968980.Google Scholar
AGUIRRE, A. & DIRZO, R. 2008. Effects of fragmentation on pollinator abundance and fruit set of an abundant understory palm in a Mexican tropical forest. Biological Conservation 141:375384.Google Scholar
AIZEN, M. A. & FEINSINGER, P. 1994. Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest, Argentina. Ecology 75:330351.CrossRefGoogle Scholar
AIZEN, M. A., ASHWORTH, L. & GALETTO, L. 2002. Reproductive success in fragmented habitats: do compatibility systems and pollination specialization matter? Journal of Vegetation Science 13:885892.Google Scholar
BECKER, P., MOURE, J. S. & PERALTA, F. J. A. 1991. More about euglossine bees in Amazonian forest fragments. Biotropica 23:586591.CrossRefGoogle Scholar
CARVALHO, F. M. V., DE MARCO, P. & FERREIRA, L. G. 2009. The Cerrado into pieces: habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biological Conservation 142:13921403.CrossRefGoogle Scholar
CASCANTE, A., QUESADA, M., LOBO, J. J. & FUCHS, E. A. 2002. Effects of dry tropical forest fragmentation on the reproductive success and genetic structure of the tree Samanea saman. Conservation Biology 16:137147.Google Scholar
DAUBER, J., BIESMEIJER, J. C., GABRIEL, D., KUNIN, W. E., LAMBORN, E., MEYER, B., NIELSEN, A., POTTS, S. G., ROBERTS, S. P. M., SÕBER, V., SETTELE, J., STEFFAN-DEWENTER, I., STOUT, J. C., TEDER, T., TSCHEULIN, T., VIVARELLI, D. & PETANIDOU, T. 2010. Effects of patch size and density on flower visitation and seed set of wild plants: a pan-European approach. Journal of Ecology 98:188196.CrossRefGoogle Scholar
DICK, C. W. 2001. Habitat change, African honeybees and fecundity in the Amazonian tree Dinizia excelsa (Fabaceae). Pp. 146157 in Bierregaard, R. O., Gascon, C., Lovejoy, T. E. & Mesquita, R. (eds.). Lessons from Amazonia: the ecology and conservation of a fragmented tropical forest. Yale University Press, New Haven.Google Scholar
DONALDSON, J., NANNI, I., ZACHARIADES, C., KEMPER, J. & THOMPSON, J. D. 2002. Effects of habitat fragmentation on pollination diversity and plant reproductive success in Renosterveld shrublands of South Africa. Conservation Biology 16:12671276.Google Scholar
DUNLEY, B., FREITAS, L. & GALETTO, L. 2009. Reproduction of Byrsonima sericea (Malpighiaceae) in restinga fragmented habitats in Southeastern Brazil. Biotropica 41:692699.Google Scholar
ELLIS, J. D., DELAPLANE, K. S., CLINE, A. & MCHUGH, J. V. 2008. The association of multiple sap beetles (Coleoptera – Nitidulidae) with western honey bees (Apis mellifera) colonies in North America. Journal of Apicultural Research and Bees World 47:187188.Google Scholar
FRANCO, A. C. 2002. Ecophysiology of woody plants. Pp. 178197 in Oliveira, P. S. & Marquis, R. J. (eds.). The Cerrado of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press, New York.Google Scholar
FUCHS, E. J., LOBO, J. A. & QUESADA, M. 2003. Effects of forest fragmentation and flowering phenology on the reproductive success and mating patterns of the tropical dry forest tree Pachira quinata. Conservation Biology 17:149157.CrossRefGoogle Scholar
GHAZOUL, J. & MCLEISH, M. 2001. Reproductive ecology of tropical forest trees in logged and fragmented habitats in Thailand and Costa Rica. Plant Ecology 153:335345.Google Scholar
GOTTSBERGER, G. & SILBERBAUER-GOTTSBERGER, I. 2006. Life in the Cerrado: a South American tropical seasonal ecosystem. Volume 2. Pollination and seed dispersion. Reta Verlag, Ulm. 383 pp.Google Scholar
GRIBEL, R. & HAY, J. D. 1993. Pollination ecology of Caryocar brasiliense (Caryocaraceae) in Central Brazil Cerrado vegetation. Journal of Tropical Ecology 9:199211.Google Scholar
HARIDASAN, M. 2000. Nutrição mineral de plantas nativas do Cerrado. Revista Brasileira de Fisiologia Vegetal 12:5464.Google Scholar
HERRERÍAS-DIEGO, Y., QUESADA, M., STONER, K. E. & LOBO, J. A. 2006. Effects of forest fragmentation on phenological patterns and reproductive success of the tropical dry forest tree Ceiba aesculifolia. Conservation Biology 20:11111120.CrossRefGoogle ScholarPubMed
HERRERÍAS-DIEGO, Y., QUESADA, M., STONER, K. E., HERNÁNDEZ-FLORES, Y., LOBO, J. A. & SANCHEZ-MONTOYA, G. 2008. Effect of forest fragmentation on fruit and seed predation of the tropical dry forest tree Ceiba aesculifolia. Biological Conservation 141:241248.CrossRefGoogle Scholar
JENNERSTEN, O. 1988. Pollination in Dianthus deltoides (Caryophyllaceae): effects of habitat fragmentation on visitation and seed set. Conservation Biology 2:359366.Google Scholar
LENNARTSSON, T. 2002. Extinction thresholds and disrupted plant–pollinator interactions in fragmented plant populations. Ecology 83:30603072.Google Scholar
LIOW, L. H., SODHI, N. S. & ELMQVIST, T. 2001. Bee diversity along a gradient of disturbance in tropical lowlands forests of south-east Asia. Journal of Applied Ecology 38:180192.Google Scholar
LOPES, L. E. & BUZATO, S. 2007. Variation in pollinator assemblages in a fragmented landscape and its effects on reproductive stages of a self-incompatible treelet, Psychotria suterella (Rubiaceae). Oecologia 154:305314.Google Scholar
MUNIN, R. L., TEIXEIRA, R. C. & SIGRIST, M. R. 2008. Esfingofilia e sistema de reprodução de Bauhinia curvula Benth. (Leguminosae: Caesalpinioideae) em Cerrado no Centro-Oeste brasileiro. Revista Brasileira de Botânica 31:1525.Google Scholar
MURCIA, C. 1996. Forest fragmentation and the pollination of neotropical plants. Pp. 1936 in Schelhas, J. & Greenberg, R. (eds.). Forest patches in tropical landscapes. Island Press, Washington, DC.Google Scholar
ORTIZ, P. L., ARISTA, M., OLIVEIRA, P. E. & TALAVERA, S. 2003. Pattern of flower and fruit production in Stryphnodendron adstringens, an andromonoecious legume tree of Central Brazil. Plant Biology 5:592599.CrossRefGoogle Scholar
QUESADA, M., STONER, K. E., LOBO, J. A., HERRERÍAS-DIEGO, Y., PALACIOS-GUEVARA, C., MUNGUÍA-ROSAS, M. A., SALAZAR, K. A. O. & ROSAS-GUERRERO, V. 2004. Effects of forest fragmentation on pollinator activity and consequences for plant reproductive success and mating patterns in bat-pollinated bombacaceous trees. Biotropica 36:131138.Google Scholar
VALDIVIA, C. E., SIMONETTI, J. A. & HENRÍQUEZ, C. A. 2006. Depressed pollination of Lapageria rosea Ruiz et Pav. (Philesiaceae) in the fragmented temperate rainforest of southern South America. Biodiversity and Conservation 15:18451856.Google Scholar
WOLF, A. T. & HARRISON, S. P. 2001. Natural habitat patchiness affects reproductive success of serpentine morning glory (Calystegia collina, Convolvulaceae) in northern California. Conservation Biology 15:111121.CrossRefGoogle Scholar
ZAR, J. H. 2009. Biostatistical analysis. (Fifth edition). Prentice-Hall, New Jersey. 994 pp.Google Scholar