Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T02:49:05.124Z Has data issue: false hasContentIssue false

Resource abundance and frugivory in two manakin species (Aves: Pipridae) inhabiting a reforested area in Colombia

Published online by Cambridge University Press:  29 August 2012

Juan A. Morales-Betancourt
Affiliation:
Grupo de Investigación en Ecosistemas Tropicales, Universidad de Caldas, Manizales, Colombia
Gabriel J. Castaño-Villa
Affiliation:
Grupo de Investigación en Ecosistemas Tropicales, Universidad de Caldas, Manizales, Colombia Departamento de Recursos Naturales y Medio Ambiente, Universidad de Caldas, Manizales, Colombia
Francisco E. Fontúrbel*
Affiliation:
Departamento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile
*
1Corresponding author. Email: fonturbel@gmail.com

Extract

Coexistence of closely related species is a central issue in community ecology, and those species are expected to present niche differentiation, particularly when resources become scarce (García & Arroyo 2005). Hence, resource abundance and diet differences might be playing a key role in determining species coexistence (Chapman & Rosenberg 1991, Stevenson et al. 2000). Trophic niche differentiation in frugivorous birds could be driven by fruit selection, morphology, behaviour (Moermond & Denslow 1983, 1985) and the spatiotemporal resource dynamics (Blake & Loiselle 1991, Saracco et al. 2005, Solórzano et al. 2000).

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BLAKE, J. G. & LOISELLE, B. A. 1991. Variation in resource abundance affects capture rates of birds in three lowland habitats in Costa Rica. Auk 108:114130.Google Scholar
BLAKE, J. G. & LOISELLE, B. A. 1992. Fruits in the diets of neotropical migrant birds in Costa Rica. Biotropica 24:200210.Google Scholar
BLENDINGER, P. G., LOISELLE, B. A. & BLAKE, J. G. 2008. Crop size, plant aggregation, and microhabitat type affect fruit removal by birds from individual melastome plants in the Upper Amazon. Oecologia 158:272283.Google Scholar
CHAPMAN, A. & ROSENBERG, K. V. 1991. Diets of four sympatric Amazonian woodcreepers (Dendrocolaptidae). Condor 93:904915.Google Scholar
CLARKE, K. 1993. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18:117143.Google Scholar
CRAWLEY, M. J. 2005. Statistics: an introduction using R. John Wiley & Sons, Chichester. 327 pp.Google Scholar
GARCÍA, J. T. & ARROYO, B. E. 2005. Food-niche differentiation in sympatric Hen Circus cyaneus and Montagu's Harriers Circus pygargus. Ibis 147:144154.Google Scholar
JACOBS, J. 1974. Quantitative measurement of food selection. A modification of the forage ratio and Ivlev's electivity index. Oecologia 14:413417.Google Scholar
LEVEY, D. J. 1987. Seed size and fruit-handling techniques of avian frugivores. American Naturalist 129:471485.Google Scholar
LEVEY, D. J. 1988. Tropical wet forest treefall gaps and distributions of understory birds and plants. Ecology 69:10761089.Google Scholar
LOISELLE, B. A. & BLAKE, J. G. 1990. Diets of understory fruit-eating birds in Costa Rica: seasonality and resource abundance. Studies in Avian Biology 13:91103.Google Scholar
MARINI, M. 1992. Foraging behavior and diet of the Helmeted manakin. Condor 94:151158.Google Scholar
MOERMOND, T. C. & DENSLOW, J. S. 1983. Fruit choice in neotropical birds: effects of fruit type and accessibility on selectivity. Journal of Animal Ecology 52:407420.Google Scholar
MOERMOND, T. C. & DENSLOW, J. S. 1985. Neotropical avian frugivores: patterns of behavior, morphology, and nutrition, with consequences for fruit selection. Ornithological Monographs 36:865897.Google Scholar
ORTIZ-PULIDO, R. & RICO-GRAY, V. 2000. The effect of spatio-temporal variation in understanding the fruit crop size hypothesis. Oikos 91:523527.Google Scholar
PERRY, J. N., WINDER, L., HOLLAND, J. M. & ALSTON, R. D. 1999. Red-blue plots for detecting clusters in count data. Ecology Letters 2:106113.Google Scholar
RODRIGUES, M. 1995. Spatial distribution and food utilization among tanagers in southeastern Brazil (Passeriformes: Emberizidae). Ararajuba 3:2732.Google Scholar
SALLABANKS, R. & COURTNEY, S. P. 1993. On fruit–frugivore relationships: variety is the spice of life. Oikos 68:567570.Google Scholar
SARACCO, J. F., COLLAZO, J. A., GROOM, M. J. & CARLO, T. A. 2005. Crop size and fruit neighborhood effects on bird visitation to fruiting Schefflera morototoni trees in Puerto Rico. Biotropica 37:8086.Google Scholar
SNOW, D. W. 2004. Family Pipridae (Manakins). Pp. 110169 in del Hoyo, J. A. & Christie, D. A. (eds.). Handbook of the birds of the world. Volume 9: Cotingas to Pipits and Wagtails. Lynx Ediciones, Barcelona.Google Scholar
SOLÓRZANO, S., CASTILLO, S., VALVERDE, T. & ÁVILA, L. 2000. Quetzal abundance in relation to fruit availability in a cloud forest in southern Mexico. Biotropica 32:523532.Google Scholar
STEVENSON, P. R., QUIÑONES, M. J. & AHUMADA, J. A. 2000. Influence of fruit availability on ecological overlap among four neotropical primates at Tinigua National Park, Colombia. Biotropica 32:533544.Google Scholar
STILES, F. G. & ROSSELLI, L. 1983. Consumption of fruits of the Melastomataceae by birds – how diffuse is coevolution? Vegetatio 108:5773.Google Scholar