Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T06:44:26.422Z Has data issue: false hasContentIssue false

Seasonality in abundance and detection bias of birds in a tropical dry forest in north-eastern South America

Published online by Cambridge University Press:  16 November 2017

Clarisse Caroline de Oliveira e Silva
Affiliation:
Pós Graduação em Ecologia e Conservação, Universidade Federal Rural do Semiárido, Av. Francisco Mota, CEP 59625-900, Mossoró, RN, Brazil
Mauro Pichorim
Affiliation:
Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho, CEP 59078-900, Natal, RN, Brazil
Pedro Teófilo Silva de Moura
Affiliation:
Pós Graduação em Ecologia e Conservação, Universidade Federal Rural do Semiárido, Av. Francisco Mota, CEP 59625-900, Mossoró, RN, Brazil
Leonardo Fernandes França*
Affiliation:
Departamento de Ciências Animais, Universidade Federal Rural do Semiárido, Av. Francisco Mota, CEP 59625-900, Mossoró, RN, Brazil
*
*Corresponding author. Email: franca_lf@ufersa.edu.br

Abstract:

Seasonal fluctuations in bird abundance are expected in semi-arid environments, but estimates may be biased if detectability is not considered. In a tropical dry forest in north-eastern Brazil, we evaluated whether bird abundance is highly seasonal, and associated with time-specific variability in detectability. We mark-recaptured birds with mist nets over three field visits (3487 records from 75 species), and used closed-capture models to estimate detectability and abundance in birds divided into three groups (all, residents, insectivores). In the two dry periods, the best models resulted in capture estimates at least three times larger than recapture, and both estimates were twice that of when rains occurred on the day preceding sampling. Abundance varied between dry and wet periods from 4.0 (from 115 ± 34 to 479 ± 144) to 13 times (183 ± 8 to 2463 ± 351). Estimates were 1.5–3.2 times greater in the dry period when behavioural responses of birds were excluded from capture-recapture models. Meanwhile, in the wet period the relative abundance was between 33–76% smaller than best-fit models estimated. This study found variation in avian abundance greater than that observed in other Neotropical dry forests, and indicates that biases may be common when not including detectability.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALBUQUERQUE, U. P., ARAÚJO, E. L., EL-DEIR, A. C. A., LIMA, A. L. A., SOUTO, A., BEZERRA, B. M., FERRAZ, E. M. N., FREIRE, E. M. X., SAMPAIO, E. V. S. B., LAS-CASAS, F. M. G., MOURA, G. J. B., PEREIRA, G. A., MELO, J. G., RAMOS, M. A., RODAL, M. J. N., SCHIEL, N., LYRA-NEVES, R. M., ALVES, R. R. N., AZEVEDO-JÚNIOR, S. M., TELINO JÚNIOR, W. R. & SEVERI, W. 2012. Caatinga revisited: ecology and conservation of an important seasonal dry forest. Scientific World Journal 2012:118.CrossRefGoogle ScholarPubMed
ALESSIO, V. G., BELTZER, A. H., LAJMANOVICH, R. C. & QUIROGA, M. A. 2005. Ecología alimentaria de algunas especies de Passeriformes (Furnariidae, Tyrannidae, Icteridae y Emberizidae): consideraciones sobre algunos aspectos del nicho ecologico. Miscelánea 14:441482.Google Scholar
ARAUJO, H. F. P. 2009. Amostragem, estimativa de riqueza de espécies e variação temporal na diversidade, dieta e reprodução de aves em área de Caatinga, Brasil. Dissertation, Universidade Federal da Paraíba, João Pessoa, Brazil.Google Scholar
ARAUJO, H. F. P. & RODRIGUES, R. C. 2011. Birds from open environments in the caatinga from state of Alagoas, northeastern Brazil. Zoologia 28:629640.Google Scholar
ARAUJO, H. F. P., VIEIRA-FILHO, A. H., CAVALCANTI, T. A. & BARBOSA, M. R. D. V. 2012. As aves e os ambientes em que elas ocorrem em uma reserva particular no Cariri paraibano, nordeste do Brasil. Revista Brasileira de Ornitologia 20:365377.Google Scholar
ASHMOLE, N. P. 1963. The regulation of numbers of tropical oceanic birds. lbis 103:458473.Google Scholar
BARTA, Z., HOUSTON, A. I., MCNAMARA, J. M., WELHAM, R. K., HEDENSTRÖM, A., WEBER, T. P., FERÉ, O. & LINDSTRÖM, J. 2006. Annual routines of non-migratory birds: optimal moult strategies. Oikos 112:580593.CrossRefGoogle Scholar
BUCKLAND, S. T. & HEREWARD, A. C. 1982. Trap-shyness of Yellow Wagtails Motacilla flava flavissima at a pre-migratory roost. Ringing and Migration 4:1523.Google Scholar
BURBIDGE, A. A. & FULLER, P. J. 2007. Gibson Desert birds: responses to drought and plenty. Emu 107:126134.Google Scholar
CAVALCANTI, L. M. P., PAIVA, L. V. & FRANÇA, L. F. 2016. Effects of rainfall on bird reproduction in a semiarid Neotropical region. Zoologia 33:e20160018.CrossRefGoogle Scholar
COX, D. T. C. & CRESSWELL, W. 2014. Mass gained during breeding positively correlates with adult survival because both reflect life history adaptation to seasonal food availability. Oecologia 174:11971204.Google Scholar
CURRY, R. L. & GRANT, P. R. 1989. Demography of the cooperatively breeding Galapagos Mockingbird, Nesomimus parvulus, in a climatically variable environment. Journal of Animal Ecology 58:441463.Google Scholar
DEAN, W. R. J. & MILTON, S. J. 2001. Responses of birds to rainfall and seed abundance in the southern Karoo, South Africa. Journal of Arid Environments 47:101121.CrossRefGoogle Scholar
DEAN, W. R. J., BARNARD, P. & ANDERSON, M. D. 2009. When to stay, when to go: trade-offs for southern African arid-zone birds in times of drought. South African Journal of Science 105:2428.CrossRefGoogle Scholar
DEL RIO, P. C. M. & BUTTERFIELD, J. E. L. 1999. Bird communities of dry forests and oak woodland of western Mexico. Ibis 141:240255.Google Scholar
FARIAS, G. B. 2007. Avifauna em quatro áreas de caatinga strictu senso no centro-oeste de Pernambuco, Brasil. Revista Brasileira de Ornitologia 15:5360.Google Scholar
FARIAS, G. B. 2009. Aves do Parque Nacional do Catimbau, Buíque, Pernambuco, Brasil. Atualidades Ornitológicas On-line 147:3639.Google Scholar
FIGUEIREDO, V. H. 2016. Período de ocorrência de aves migratórias em uma floresta tropical seca. Dissertation, Universidade Federal Rural do Semiárido, Mossoró, Brazil.Google Scholar
GRANT, P. R., GRANT, B. R., KELLER, L. F. & PETREN, K. 2000. Effects of El Niño events on Darwin's finch productivity. Ecology 81:24422457.Google Scholar
HERREMANS, M. 2004. Effects of drought on birds in the Kalahari, Botswana. Ostrich: Journal of African Ornithology 75:217227.Google Scholar
JAKSIC, F. M. & LAZO, I. 1999. Response of a bird assemblage in semiarid Chile to the 1997–1998 El Niño. The Wilson Bulletin 111:527535.Google Scholar
JANSEN, D. Y. M., ABADI, F., HAREBOTTLE, D. & ALTWEGG, R. 2014. Does seasonality drive spatial patterns in demography? Variation in survival in African reed warblers Acrocephalus baeticatus across southern Africa does not reflect global patterns. Ecology and Evolution 4:889898.Google Scholar
LEAL, I. R., SILVA, J. M. C., TABARELLI, M. & LACHER, T. E. 2005. Changing the course of biodiversity conservation in the Caatinga of Northeastern Brazil. Conservation Biology 19:701706.CrossRefGoogle Scholar
LEPAGE, D. & LLOYD, P. 2009. Avian clutch size in relation to rainfall seasonality and stochasticity along an aridity gradient across South Africa. Journal of African Ornithology 75:250268.Google Scholar
LOISELLE, B. A. & BLAKE, J. G. 1991. Temporal variation in birds and fruits along an elevational gradient in Costa Rica. Ecology 72:180193.CrossRefGoogle Scholar
MARONE, L. 1992. Seasonal and year-to-year fluctuations of bird populations and guilds in the Monte Desert, Argentina. Journal of Field Ornithology 63:294308.Google Scholar
MARTIN, T. E. 1996. Life history evolution in tropical and south temperate birds: what do we really know? Journal of Avian Biology 27:263272.CrossRefGoogle Scholar
MILES, L., NEWTON, A. C., DEFRIES, R. S., RAVILIOUS, C., MAY, I., BLYTH, S., KAPOS, V. & GORDON, J. E. 2006. A global overview of the conservation status of tropical dry forests. Journal of Biogeography 33:491505.Google Scholar
MORTON, S. R., STAFFORD SMITH, D. M., DICKMAN, C. R., DUNKERLEY, D. L., FRIEDEL, M. H., McALLISTER, R. R. J., REID, J. R. W., ROSHIER, D. A., SMITH, M. A., WALSH, F. J., WARDLE, G. M., WATSON, I. W. & WESTOBY, M. 2011. A fresh framework for the ecology of arid Australia. Journal of Arid Environments 75: 313329.Google Scholar
MURPHY, P. G. & LUGO, A. E. 1986. Ecology of tropical dry forest. Annual Review of Ecology and Systematics 17:6788.Google Scholar
NASCIMENTO, J. L. X. 2000. Estudo comparativo da avifauna em duas Estações Ecológicas da Caatinga: Aiuaba e Seridó. Mellopsittacus 3:1235.Google Scholar
NEWTON, I. 1998. Population limitation in birds. Academic Press, London. 597 pp.Google Scholar
NORRIS, J. L. & POLLOCK, K. H. 1995. A capture-recapture model with heterogeneity and behavioural response. Environmental and Ecological Statistics 2:305313.Google Scholar
NORVELL, E. R., FRANK, P. H. & PARRISH, J. R. 2003. A seven-year comparison of relative-abundance and distance-sampling methods. The Auk 120:10131028.Google Scholar
NOVOA, F. F., VELOSO, C. & LÓPEZ-CALLEJA, M. V. 1996. Seasonal changes in diet, digestive morphology and digestive efficiency in the rufous-collared sparrow (Zonotrichia capensis) in central Chile. The Condor 98:873876.Google Scholar
OLMOS, F., SILVA, W. A. G. & ALBANO, C. G. 2005. Aves em oito áreas de Caatinga no sul do Ceará e oeste de Pernambuco, nordeste do Brasil: composição, riqueza e similaridade. Papéis Avulsos de Zoologia (São Paulo) 45:179199.Google Scholar
OTIS, D. L., BURNHAM, K. P., WHITE, G. C. & ANDERSON, D. R. 1978. Statistical inference from capture data on closed animal populations. Wildlife Monographs 62:3135.Google Scholar
PAVEY, C. R. & NANO, C. E. M. 2009. Bird assemblages of arid Australia: vegetation patterns have a greater effect than disturbance and resource pulses. Journal of Arid Environments 73:634642.Google Scholar
PEELE, A. M., MARRA, P. M., SILLETT, T. S. & SHERRY, T. W. 2015. Combining survey methods to estimate abundance and transience of migratory birds among tropical nonbreeding habitats. The Auk 132:926937.Google Scholar
PLEDGER, S. 2000. Unified maximum likelihood estimates for closed capture-recapture models using mixtures. Biometrics 56:434442.Google Scholar
POULIN, B., LEFEBVRE, G. & McNEIL, R. 1993. Variation in bird abundance in tropical arid and semi-arid habitats. Ibis 135:432441.Google Scholar
PRADO, D. E. 2003. As caatingas da America do Sul. Pp. 373 in Leal, I. R., Tabarelli, M. & Silva, J. M. C. (eds). Ecologia e conservação da caatinga. Editora Universidade da UFPE, Recife.Google Scholar
RODRIGUEZ-FERRARO, A. & BLAKE, J. G. 2008. Diversity patterns of bird assemblages in arid zones of northern Venezuela. Condor 110:405420.Google Scholar
ROSENSTOCK, S. S., ANDERSON, D. R., GIESEN, K. M., LEUKERING, T. & CARTER, M. F. 2002. Landbird counting techniques: current practices and an alternative. The Auk 119:4653.CrossRefGoogle Scholar
SÆTHER, B., SUTHERLAND, W. J. & ENGEN, S. 2004. Climate influence on avian population dynamics. Birds and Climate Change 35:185209.Google Scholar
SANTANA, J. A. S. & SOUTO, J. S. 2006. Diversidade e estrutura fitossociológica da Caatinga na Estação Ecológica do Seridó-RN. Revista de Biologia e Ciências da Terra 6:232242.Google Scholar
SCHWINNING, S. & SALA, O. E. 2004. Hierarchy of responses to resource pulses in arid semi-arid ecosystems. Oecologia 141:211220.Google Scholar
SILVA, J. M. C., SOUZA, M. A., BIEBER, A. G. D. & CARLOS, C. J. 2003. Aves da Caatinga: Status, uso do habitat e sensitividade. Pp. 237273 in Leal, I. R., Tabarelli, M. & Silva, J. M. C. (eds). Ecologia e conservação da Caatinga. Editora Universidade da UFPE, Recife.Google Scholar
SOUTO, G. H. B. de, O. 2010. Ecologia alimentar de aves insetívoras de um fragmento de mata decídua do extremo norte da Mata Atlântica. Dissertation, Universidade Federal Rural do Rio Grande do Norte, Natal. Brazil.Google Scholar
SOUZA, E. A., TELINO-JÚNIOR, W. R., NASCIMENTO, J. L. X., LYRA-NEVES, R. M., JÚNIOR, S. M. A., FILHO, C. L. & NETO, A. S. 2007. Estimativas populacionais de avoantes Zenaida auriculata (Aves Columbidae, DesMurs, 1847) em colônias reprodutivas no Nordeste do Brasil. Ornithologia 2:2833.Google Scholar
STUTCHBURY, B. J. M. & MORTON, E. S. 2001. Behavioral ecology of tropical birds. Academic Press, San Diego. 165 pp.Google Scholar
TISCHLER, M., DICKMAN, C. R. & WARDLE, G. M. 2013. Avian functional group responses to rainfall across four vegetation types in the Simpson Desert, central Australia. Austral Ecology 38:809819.Google Scholar
VELLOSO, A. L., SAMPAIO, E. V. S. B. & PAREYN, F. G. C. 2002. Ecorregiões propostas para o bioma Caatinga. Associação Plantas do Nordeste and The Nature Conservance do Brasil, Recife. 76 pp.Google Scholar
WARDELL-JOHNSON, G. & WILLIAMS, M. 2000. Edges and gaps in mature karri forest, south-western Australia: logging effects on bird species abundance and diversity. Forest Ecology and Management 131:121.Google Scholar
WIENS, J. A. 1991. Ecological similarity of shrub-desert avifaunas of Australia and North America. Ecology 72:479495.Google Scholar
WILLIAMS, B. K., NICHOLS, J. D. & CONROY, M. 2002. Analysis and management of animal populations. Academic Press, London. 817 pp.Google Scholar
WILLIAMS, S. E. & MIDDLETON, J. 2008. Climatic seasonality, resource bottlenecks, and abundance of rainforest birds: implications for global climate change. Biodiversity Research 14:6977.Google Scholar