Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T11:52:52.629Z Has data issue: false hasContentIssue false

Spatial and temporal variation in amphibian metacommunity structure in Chiapas, Mexico

Published online by Cambridge University Press:  04 August 2014

Leticia Margarita Ochoa-Ochoa*
Affiliation:
Conservation Biogeography and Macroecology Group, School of Geography and the Environment, South Parks Road, Oxford OX1 3QY, UK Centre of Macroecology, Evolution and Climate, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
Robert James Whittaker
Affiliation:
Conservation Biogeography and Macroecology Group, School of Geography and the Environment, South Parks Road, Oxford OX1 3QY, UK Centre of Macroecology, Evolution and Climate, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
*
1Corresponding author. Email: leticiaochoa@snm.ku.dk

Abstract:

Amphibians are known to be sensitive to environmental change but their responses at the level of metacommunities to short-term environmental variability are poorly understood. We used field data from two protected areas, La Pera and Nahá (Chiapas, Mexico) to test for variation in metacommunity properties for two consecutive years (2009 and 2010). Amphibians and accompanying environmental data were recorded to a standardized protocol within each landscape, in four or five transects of 50 × 2-m per patch, for 30 and 31 patches, respectively. We found 23 species in La Pera and 30 in Nahá (21 species shared). Metacommunity structure was analysed using reciprocal averaging (RA) ordination by means of metrics for coherence, turnover and boundary clumping, with Spearman rank correlation used to examine relationships with environmental variables. The metacommunity structure varied differentially among the landscapes between years, being classed as quasi-Gleasonian in La Pera in both years, but Clementsian for Nahá in 2009 and Gleasonian for Nahá in 2010. In further illustration of variation between years, in 2009 the principal community gradient (RA axis 1) for La Pera was significantly positively correlated with altitude (r = 0.36), forest disturbance status (r = 0.78), mean canopy cover (r = 0.79) and mean litter depth (r = 0.67), while in 2010 it was correlated with latitude (r = 0.38), mean grass-layer height (r = 0.38), incidence of rainfall prior to sampling (r = 0.35) and presence of temporary ponds (r = 0.45). Our findings support the notion that amphibians respond to short-term environmental changes by individualistic movement within the landscape as well as via population dynamic responses.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ADUM, G. B., EICHHORN, M. P., ODURO, W., OFORI-BOATENG, C. & RÖDEL, M.-O. 2013. Two-stage recovery of amphibian assemblages following selective logging of tropical forests. Conservation Biology 27:354363.Google Scholar
ALEXANDER, M. A. & EISCHEID, J. K. 2001. Climate variability in regions of amphibian declines. Conservation Biology 15:930942.Google Scholar
ANDERSON, D. E., GOUDIE, A. S. & PARKER, A. G. 2007. Global environments through the Quaternary. Oxford University Press, Oxford. 392 pp.Google Scholar
BOGERT, C. M. 1969. The eggs and hatchlings of the Mexican leptodactylid frog Eleutherodactylus decoratus Taylor. American Museum Novitates 2376:19.Google Scholar
BRODMAN, R. 2009. A 14-year study of amphibian populations and metacommunities. Herpetological Conservation and Biology 4:106119.Google Scholar
BUCKLEY, J. & BEEBEE, T. J. C. 2004. Monitoring the conservation status of an endangered amphibian: the Natterjack toad Bufo calamita in Britain. Animal Conservation 7:221228.Google Scholar
CLEMENTS, F. E. 1916. Plant succession: an analysis of the development of vegetation. Carnegie Institute of Washington, Washington. 512 pp.CrossRefGoogle Scholar
CONANP. 2006. Programa de conservación y manejo área de protección de flora y fauna Nahá. Comisión Nacional de Áreas Naturales Protegidas, Mexico City. 178 pp.Google Scholar
DENVER, R. J. 1997. Proximate mechanisms of phenotypic plasticity in amphibian metamorphosis. American Zoologist 37:172184.Google Scholar
DONNELLY, M. A. & CRUMP, M. L. 1998. Potential effects of climate change on two Neotropical amphibian assemblages. Climatic Change 39:541561.Google Scholar
DUELLMAN, W. E. & TRUEB, L. 1994. Biology of amphibians. The Johns Hopkins University Press, Baltimore. 670 pp.CrossRefGoogle Scholar
GARCÍA, E. 1988. Modificaciones al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de La República Mexicana). Instituto de Geografía. Universidad Nacional Autónoma de México, Mexico City. 205 pp.Google Scholar
GARCÍA, A. & CABRERA-REVES, A. 2008. Effect of seasonality and vegetation structure on the amphibian and reptile community of the Chamela Biological Station, in Jalisco, Mexico. Acta Zoologica Mexicana Nueva Serie 24:91115.Google Scholar
GARDNER, T. A., BARLOW, J. & PERES, C. A. 2007. Paradox, presumption and pitfalls in conservation biology: the importance of habitat change for amphibians and reptiles. Biological Conservation 138:166179.CrossRefGoogle Scholar
GLEASON, H. A. 1917. The structure and development of the plant association. Bulletin of the Torrey Botanical Club 44:463481.Google Scholar
GLEASON, H. A. 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club 53:726.Google Scholar
GOTTSBERGER, B. & GRUBER, E. 2004. Temporal partitioning of reproductive activity in a Neotropical anuran community. Journal of Tropical Ecology 20:271280.Google Scholar
GRØTAN, V., LANDE, R., ENGEN, S., SÆTHER, B.-E. & DEVRIES, P. J. 2012. Seasonal cycles of species diversity and similarity in a tropical butterfly community. Journal of Animal Ecology 81:714723.Google Scholar
GUO, Q. F., BROWN, J. H. & VALONE, T. J. 2002. Long-term dynamics of winter and summer annual communities in the Chihuahuan Desert. Journal of Vegetation Science 13:575584.Google Scholar
HARE, K. M., HOARE, J. M. & HITCHMOUGH, R. A. 2007. Investigating natural population dynamics of Naultinus manukanus to inform conservation management of New Zealand's cryptic diurnal geckos. Journal of Herpetology 41:8193.Google Scholar
HÖDL, W. 1990. Reproductive diversity in Amazonian lowland frogs. Fortschitte der Zoologie 38:4160.Google Scholar
HOLYOAK, M., LEIBOLD, M. A., MOUQUET, N., HOLT, R. D. & HOOPES, M. F. 2005. Metacommunities: a framework for large-scale community ecology. Pp. 131 in Holyoak, M., Leibold, M. A. & Holt, R. D. (eds.). Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago.Google Scholar
JAMESON, D. L. 1954. Social patterns in the leptodactylid frogs Syrrhophus and Eleutherodactylus. Copeia 1954:3638.CrossRefGoogle Scholar
JIANG, L. & MORIN, P. J. 2004. Temperature-dependent interactions explain unexpected responses to environmental warming in communities of competitors. Journal of Animal Ecology 73:569576.CrossRefGoogle Scholar
KEITH, S. A., NEWTON, A. C., MORECROFT, M. D., GOLICHER, D. J. & BULLOCK, J. M. 2011. Plant metacommunity structure remains unchanged during biodiversity loss in English woodlands. Oikos 120:302310.Google Scholar
LANDE, R., ENGEN, S. & SÆTHER, B.-E. 2003. Stochastic population dynamics in ecology and conservation. Oxford University Press, Oxford. 212 pp.Google Scholar
LEGENDRE, P. & LEGENDRE, L. 1998. Numerical Ecology. Elsevier Science B. V., Amsterdam. 853 pp.Google Scholar
LEIBOLD, M. A. & MIKKELSON, G. M. 2002. Coherence, species turnover, and boundary clumping: elements of meta-community structure. Oikos 97:237250.Google Scholar
LEIBOLD, M. A., HOLYOAK, M., MOUQUET, N., AMARASEKARE, P., CHASE, J. M., HOOPES, M. F., HOLT, R. D., SHURIN, J. B., LAW, R., TILMAN, D., LOREAU, M. & GONZALEZ, A. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7:601613.Google Scholar
LIPS, K. R., MENDELSON, J. R., MUÑOZ-ALONSO, A., CANSECO-MÁRQUEZ, L. & MULCAHY, D. G. 2004. Amphibian population declines in montane southern Mexico: resurveys of historical localities. Biological Conservation 119:555564.Google Scholar
MAGURRAN, A. E. & DORNELAS, M. 2010. Biological diversity in a changing world. Philosophical Transactions of the Royal Society B: Biological Sciences 365:35933597.CrossRefGoogle Scholar
MAGURRAN, A. E. & HENDERSON, P. A. 2010. Temporal turnover and the maintenance of diversity in ecological assemblages. Philosophical Transactions of the Royal Society B: Biological Sciences 365:36113620.Google Scholar
NEWMAN, R. A. 1998. Ecological constraints on amphibian metamorphosis: interactions of temperature and larval density with responses to changing food level. Oecologia 115:916.Google Scholar
OCHOA-OCHOA, L. M., BEZAURY-CREEL, J. E., VÁZQUEZ, L.-B. & FLORES-VILLELA, O. 2011. Choosing the survivors? A GIS-based triage support tool for micro-endemics: application to data for Mexican amphibians. Biological Conservation 144:27102718.Google Scholar
OLSON, D. H., BLAUSTEIN, A. R. & O’HARA, R. K. 1986. Mating pattern variability among western toad (Bufo boreas) populations. Oecologia 70:351356.CrossRefGoogle ScholarPubMed
PICKETT, S. T. A. & CADENASSO, M. L. 1995. Landscape ecology: spatial heterogeneity in ecological systems. Science 269:331334.Google Scholar
PRESLEY, S. J. & WILLIG, M. R. 2010. Bat metacommunity structure on Caribbean islands and the role of endemics. Global Ecology and Biogeography 19:185199.Google Scholar
PRESLEY, S. J., HIGGINS, C. L. & WILLIG, M. R. 2010. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119:908917.Google Scholar
PRESTON, F. W. 1960. Time and space and the variation of species. Ecology 41:611627.Google Scholar
PRUGH, L. R., HODGES, K. E., SINCLAIR, A. R. E. & BRASHARES, J. S. 2008. Effect of habitat area and isolation on fragmented animal populations. Proceedings of the National Academy of Sciences USA 105:2077020775.Google Scholar
RAFFEL, T. R., ROHR, J. R., KIESECKER, J. M. & HUDSON, P. J. 2006. Negative effects of changing temperature on amphibian immunity under field conditions. Functional Ecology 20:819828.Google Scholar
RESETARITS, W. J., BINCKLEY, C. A. & CHALCRAFT, D. R. 2005. Habitat selection, species interaction and processes of community assembly in complex landscapes. Pp. 374398 in Holyoak, M., Leibold, M. A. & Holt, R. D. (eds.). Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago.Google Scholar
RICHTER-BOIX, A., LLORENTE, G. A. & MONTORI, A. 2006. Breeding phenology of an amphibian community in a Mediterranean area. Amphibia-Reptilia 27:549559.Google Scholar
RON, S. R., DUELLMAN, W. E., COLOMA, L. A. & BUSTAMANTE, M. R. 2003. Population decline of the Jambato toad Atelopus ignescens (Anura: Bufonidae) in the Andes of Ecuador. Journal of Herpetology 37:116126.Google Scholar
SALVIDIO, S. 2009. Detecting amphibian population cycles: the importance of appropriate statistical analyses. Biological Conservation 142:455461.Google Scholar
SANDOVAL-COMTE, A., PINEDA, E. & AGUILAR-LÓPEZ, J. L. 2012. In search of critically endangered species: the current situation of two tiny salamander species in the neotropical mountains of Mexico. PLOS ONE 7:e34023.Google Scholar
SHAW, P. J. 2003. Multivariate statistics for the environmental sciences. Hodder Arnold, London. 233 pp.Google Scholar
SINSCH, U. 1990. Migration and orientation in anuran amphibians. Ethology, Ecology and Evolution 2:6579.CrossRefGoogle Scholar
SINSCH, U. 1997. Postmetamorphic dispersal and recruitment of first breeders in a Bufo calamita metapopulation. Oecologia 112:4247.Google Scholar
SMITH, M. A. & GREEN, D. M. 2005. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110128.Google Scholar
STEBBINS, R. C. & COHEN, N. W. 1997. A natural history of amphibians. Princeton University Press, Princeton. 317 pp.Google Scholar
STEVENS, V. M., POLUS, E., WESSELINGH, R. A., SCHTICKZELLE, N. & BAGUETTE, M. 2004. Quantifying functional connectivity: experimental evidence for patch-specific resistance in the Natterjack toad (Bufo calamita). Landscape Ecology 19:829842.Google Scholar
STEVENS, V. M., LEBOULENGÉ, E., WESSELINGH, R. A. & BAGUETTE, M. 2006. Quantifying functional connectivity: experimental assessment of boundary permeability for the Natterjack toad (Bufo calamita). Oecologia 150:161171.Google Scholar
STEWART, M. M. 1995. Climate driven population fluctuations in the rain forest. Journal of Herpetology 29:437446.Google Scholar
VARUGHESE, M. M. 2011. A framework for modelling ecological communities and their interactions with the environment. Ecological Complexity 8:105112.Google Scholar
WELLS, K. D. 2007. The ecology and behavior of amphibians. University of Chicago Press, Chicago. 1148 pp.Google Scholar
WELSH, H. H., HODGSON, G. R. & LIND, A. J. 2005. Ecogeography of the herpetofauna of a northern California watershed: linking species patterns to landscape processes. Ecography 28:521536.CrossRefGoogle Scholar
WERNER, E. E., SKELLY, D. K., RELYEA, R. A. & YUREWICZ, K. L. 2007. Amphibian species richness across environmental gradients. Oikos 116:16971712.Google Scholar
WHITEMAN, H. H. & WISSINGER, S. A. 2005. Amphibian population cycles and long-term data sets. Pp. 177184 in Lannoo, M. J. (ed.). Conservation and status of North American amphibians. University of California Press, Berkeley.Google Scholar
YACHI, S. & LOREAU, M. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences USA 96:14631468.Google Scholar