Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T13:29:50.429Z Has data issue: false hasContentIssue false

Spatial association between floral resources and hummingbird activity in a Mexican tropical montane cloud forest

Published online by Cambridge University Press:  29 August 2012

Leonor Jiménez
Affiliation:
Instituto de Ecología A. C., Carretera Antigua a Coatepec No. 351, El Haya, Xalapa 91070, Veracruz, México
Simoneta Negrete-Yankelevich*
Affiliation:
Instituto de Ecología A. C., Carretera Antigua a Coatepec No. 351, El Haya, Xalapa 91070, Veracruz, México
Rogelio Macías-Ordóñez
Affiliation:
Instituto de Ecología A. C., Carretera Antigua a Coatepec No. 351, El Haya, Xalapa 91070, Veracruz, México
*
1Corresponding author. Email: simoneta.negrete@inecol.edu.mx

Abstract:

Spatial distribution of resources is known to govern animal distribution and behaviour. However, few empirical studies have formally evaluated this relationship. Unlike previous studies in which a patch or gap of floral resources is defined a priori by the observer at a subjective perception scale, we used the Spatial Analysis by Distance IndicEs (SADIE) to assess the location, length and spatial co-occurrence of patches and gaps of Palicourea padifolia inflorescences and hummingbird activity (feeding, perching, vocalizing, flying past and agonistic behaviour) in a tropical montane cloud forest of central Veracruz, Mexico. Along a 1010-m transect, both resource and hummingbird activity had a distribution approximately 200% more aggregated than expected by chance, at a scale of tens to hundreds of metres in length. In addition, aggregation patterns of resource and overall and agonistic hummingbird activity were found to be positively associated in 2009 but negatively in 2010. Campylopterus curvipennis and Amazilia cyanocephala were the most frequent species involved in vocal and agonistic activity. The difference observed between the two years may be due to changes in the composition and dominance of hummingbird species with different foraging strategies. In both years, hummingbird overall activity was positively correlated to size of resource patches.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AGUILAR, R., ASHWORTH, L., GALETTO, L. & AIZEN, M. A. 2006. Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecology Letters 9:968980.Google Scholar
ASHWORTH, L., QUESADA, M., CASAS, A., AGUILAR, R. & OYAMA, K. 2009. Pollinator-dependent food production in Mexico. Biological Conservation 142:10501057.Google Scholar
BAUM, K. A. & GRANT, W. E. 2001. Hummingbird foraging behavior in different patch types: simulation of alternative strategies. Ecological Modelling 137:201209.Google Scholar
CARABALLO-ORTIZ, M. A., SANTIAGO-VALENTIN, E. & CARLO, T. A. 2011. Flower number and distance to neighbours affect the fecundity of Goetzea elegans (Solanaceae). Journal of Tropical Ecology 27:521528.Google Scholar
CARLO, T. A. 2005. Interespecific neighbors change seed dispersal pattern of an avian-dispersed plant. Ecology 86:24402449.Google Scholar
CARLO, T. A. & MORALES, J. M. 2008. Inequalities in fruit-removal and seed dispersal: consequences of bird behaviour, neighbourhood density and lanscape aggregation. Journal of Ecology 96:609618.Google Scholar
CARPENTER, F. L. 1978. A spectrum of nectar-eater communities. American Zoologist 18:809819.Google Scholar
CARPENTER, F. L. 1987. Food abundance and territoriality: to defend or not to defend? American Zoologist 27:387399.Google Scholar
CARTAR, R. V. & REAL, L. A. 1997. Habitat structure and animal movement: the behaviour of bumble bees in uniform and random spatial resource distributions. Oecologia 112:430434.Google Scholar
CONTRERAS, P. S. & ORNELAS, J. F. 1999. Reproductive conflicts of Palicourea padifolia (Rubiaceae) a distylous shrub of a tropical cloud forest in Mexico. Plant Systematics and Evolution 219:225241.Google Scholar
COTTON, P. A. 2007. Seasonal resource tracking by Amazonian hummingbirds. Ibis 149:135142.Google Scholar
CRESSWELL, J. E. 1997. Spatial heterogeneity, pollinator behaviour and pollinator-mediated gene flow: bumblebee movements in variously aggregated rows of oil-seed rape. Oikos 78:546556.Google Scholar
DALE, M. R. T. 1999. Spatial pattern analysis in plant ecology. Cambridge University Press, Cambridge. 326 pp.Google Scholar
FEINSINGER, P., BUSBY, W. H., MURRAY, K. G., BEACH, J. H., POUNDS, W. Z. & LINHART, Y. B. 1988. Mixed support for spatial heterogeneity in species interactions: hummingbirds in a tropical disturbance mosaic. American Naturalist 131:3357.Google Scholar
FEINSINGER, P., TIEBOUT, H. M. & YOUNG, B. E. 1991. Do tropical bird-pollinated plants exhibit density-dependent interactions? Field experiments. Ecology 72:19531963.Google Scholar
GARCÍA, D., CHACOFF, N. P., HERRERA, J. M. & AMICO, G. C. 2009. La escala espacial de las interacciones planta–animal. Pp. 133156 in Medel, R., Aizen, M. A. & Zamora, R. (eds.). Ecología y evolución de interacciones planta–animal. Editorial Universitaria, Santiago de Chile.Google Scholar
GARCÍA, D., ZAMORA, R. & AMICO, G. C. 2011. The spatial scale of plant–animal interactions: effects of resource availability and habitat structure. Ecological Monographs 81:103121.Google Scholar
GILL, F. B. & WOLF, L. L. 1977. Nonrandom foraging by sunbirds in a patchy environment. Ecology 58:12841296Google Scholar
GONZÁLEZ, C. & ORNELAS, J. F. 2005. Song structure and microgeographic song variation in Wedge-Tailed Sabrewings (Campylopterus curvipennis) in Veracruz, Mexico. The Auk 122:593607.Google Scholar
GONZÁLEZ, C., ORNELAS, J. F. & JIMÉNEZ, L. 2005. Between-year changes in functional gender expression of Palicourea padifolia (Rubiaceae), a distylous, hummingbird-pollinated shrub. The Auk 122:593607.Google Scholar
GOULSON, D. 1999. Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspectives in Plant Ecology, Evolution and Systematics 2:185209.Google Scholar
GOULSON, D. 2000. Why do pollinators visit proportionally fewer flowers in large patches? Oikos 91:485492.Google Scholar
GROOM, M. J. 2001. Consequences of subpopulation isolation for pollination, herbivory, and population growth in Clarkia concinna concinna (Onagraceae). Biological Conservation 100:5563.Google Scholar
JOHNSON, C. J., SEIP, D. R. & BOYCE, M. S. 2004. A quantitative approach to conservation planning: using resource selection functions to map the distribution of mountain caribou at multiple spatial scales. Journal of Applied Ecology 41:238251.Google Scholar
JOHNSON, S. D., PETER, C. I., NILSSON, L. A. & ÅGREN, J. 2003. Pollination success in a deceptive orchid is enhanced by co-occurring rewarding magnet plants. Ecology 84:29192927.Google Scholar
KODRIC-BROWN, A. & BROWN, J. H. 1978. Influence of economics, interspecific competition, and sexual dimorphism on territoriality of migrant rufous hummingbirds. Ecology 59:285296.Google Scholar
KOTLIAR, N. B. & WIENS, J. A. 1990. Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253260.Google Scholar
LEGENDRE, P. & LEGENDRE, L. 1998. Numerical ecology. (Second edition). Elsevier Science B. V., Amsterdam. 853 pp.Google Scholar
LINHART, Y. B. 1973. Ecological and behavioral determinants of pollen dispersal in hummingbird-pollinated Heliconia. American Naturalist 107:511523.Google Scholar
MAESTRE, F. T. & QUERO, J. L. 2008. Análisis espacial mediante índices de distancia (SADIE). Pp. 129151 in Maestre, F. T., Escudero, A. & Bonet, A. (eds.). Introducción al análisis espacial de datos en ecología y ciencias ambientales: métodos y aplicaciones. Dykinson, S. L., Madrid. 849 pp.Google Scholar
MONTGOMERIE, R. D. & GASS, C. L. 1981. Energy limitation of hummingbird populations in tropical and temperate communities. Oecologia 50:162165.Google Scholar
MORALES, J. M., RIVAROLA, M. D., AMICO, G. & CARLO, T. A. 2012. Neighborhood effects on seed dispersal by frugivores: testing theory with mistletoe–marsupial system in Patagonia. Ecology 93:741748.Google Scholar
NEGRETE-YANKELEVICH, S., FRAGOSO, C., NEWTON, A. C., RUSSELL, G. & HEAL, O. W. 2006. Spatial patchiness of litter, nutrients and macroinvertebrates during secondary succession in a tropical montane cloud forest in Mexico. Plant and Soil 286:123139.Google Scholar
ORNELAS, J. F., JIMÉNEZ, L., GONZÁLEZ, C. & HERNÁNDEZ, A. 2004a. Reproductive ecology of distylous Palicourea padifolia (Rubiaceae) in a tropical montane cloud forest. I. Hummingbirds’ effectiveness as pollen vectors. American Journal of Botany 97:10521060.Google Scholar
ORNELAS, J. F., GONZÁLEZ, C., JIMÉNEZ, L., LARA, C. & MARTÍNEZ, A. J. 2004b. Reproductive ecology of dystilous Palicourea padifolia (Rubiaceae) in a tropical montane cloud forest. II. Attracting and rewarding mutualistic and antagonistic visitors. American Journal of Botany 91:10611069.Google Scholar
PERRY, J. N. 1998. Measures of spatial pattern for counts. Ecology 79:10081017.Google Scholar
PERRY, J. N. & DIXON, P. M. 2002. A new method to measure spatial association for ecological count data. Ecoscience 9:133141.Google Scholar
PYKE, G. H. 1978. Optimal foraging in hummingbirds: testing the marginal value theorem. American Zoologist 18:739752Google Scholar
SARACCO, J. F., COLLAZO, J. A. & GROOM, M. J. 2004. How do frugivores track resources? Insights from spatial analyses of bird foraging in a tropical forest. Oecologia 139:235245.Google Scholar
SCHMITT, J. 1983. Flowering plant density and pollinator visitation in Senecio. Oecologia 60:97102.Google Scholar
SCHUCHMANN, K.L. 1999. Family Trochilidae (Hummingbirds). Pp. 468535 in Del Hoyo, J., Elliott, A. & Sargatal, J. (eds.). Handbook of Birds of the World, Vol. 5. Barn–Owls to Hummingbirds. Lynx Edicions, Barcelona. 759 pp.Google Scholar
SOMANATHAN, H., BORGES, R. M. & CHAKRAVARTHY, V. S. 2004. Does neighborhood floral display matter? Fruit set in Carpenter bee-pollinated Heterophragma quadriloculare and beetle-pollinated Lasiosiphon eriocephalus. Biotropica 36:139147.Google Scholar
STEFFAN-DEWENTER, I., MÜNZENBERG, U., BÜRGER, C., THIES, C. & TSCHARNTKE, T. 2002. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:14211432.Google Scholar
STEHLIK, I., CASPERSEN, J. P. & BARRETT, S. C. H. 2006. Spatial ecology of mating success in a sexually polymorphic plant. Proceedings of the Royal Society B 273: 387394.Google Scholar
STILES, F. G. & WOLF, L. L. 1970. Hummingbird territoriality at a tropical flowering tree. The Auk 87:467491.Google Scholar
TAYLOR, C. M. 1989. Revision of Palicourea (Rubiaceae) in Mexico and Central America. Systematic Botany Monographs 26:1102.Google Scholar
TEMELES, E. J. & KRESS, W. J. 2010. Mate choice and mate competition by a tropical hummingbird at a floral resource. Proceedings of the Royal Society B 277:16071613.Google Scholar
THOMSON, J. D. 1981. Spatial and temporal components of resource assessment by flower-feeding insects. Journal of Animal Ecology 50:4959.Google Scholar
THOMSON, J. D. 1982. Patterns of visitation of animals pollinators. Oikos 39:241250.Google Scholar
TURNER, M. G. 1989. Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics 20:171197.Google Scholar
WIENS, J. A. 1989. Spatial scaling in ecology. Functional Ecology 3:385397.Google Scholar
WILLIAMS-LINERA, G. 2002. Tree species richness complementarity, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodiversity and Conservation 11:18251843.Google Scholar
WILLIAMS-LINERA, G. 2003. Temporal and spatial phenological variation of understory shrubs in a tropical montane cloud forest. Biotropica 35:2836.Google Scholar
WINDER, L., ALEXANDER, C. J., HOLLAND, J. M., WOOLLEY, C. & PERRY, J. N. 2001. Modelling the dynamic spatio-temporal response of predators to transient prey patches in the field. Ecology Letters 4:568576.Google Scholar