Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T23:20:00.723Z Has data issue: false hasContentIssue false

Spatial distribution of Bertholletia excelsa in selectively logged forests of the Peruvian Amazon

Published online by Cambridge University Press:  09 January 2017

Cara A. Rockwell*
Affiliation:
Center for International Forestry Research (CIFOR), Lima, Perú International Center for Tropical Botany, Department of Earth and Environment, Florida International University (FIU), Miami, FL, USA33199
Manuel R. Guariguata
Affiliation:
Center for International Forestry Research (CIFOR), Lima, Perú
Mary Menton
Affiliation:
Center for International Forestry Research (CIFOR), Lima, Perú Solutions & Evidence for Environment & Development (SEED) 106 Cowley Rd, Oxford OX4 1JE, UK
Eriks Arroyo Quispe
Affiliation:
Center for International Forestry Research (CIFOR), Lima, Perú Universidad Nacional Amazónica de Madre de Dios (UNAMAD), Facultad de Ingeniería Forestal y Medio Ambiente, Puerto Maldonado, Madre de Dios, Perú
Julia Quaedvlieg
Affiliation:
Center for International Forestry Research (CIFOR), Lima, Perú
Eleanor Warren-Thomas
Affiliation:
Center for International Forestry Research (CIFOR), Lima, Perú Centre for Ecology, Evolution and Conservation, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
Harol Fernandez Silva
Affiliation:
Center for International Forestry Research (CIFOR), Lima, Perú Universidad Nacional Amazónica de Madre de Dios (UNAMAD), Facultad de Ingeniería Forestal y Medio Ambiente, Puerto Maldonado, Madre de Dios, Perú
Edwin Eduardo Jurado Rojas
Affiliation:
Center for International Forestry Research (CIFOR), Lima, Perú Universidad Nacional Amazónica de Madre de Dios (UNAMAD), Facultad de Ingeniería Forestal y Medio Ambiente, Puerto Maldonado, Madre de Dios, Perú
José Andrés Hideki Kohagura Arrunátegui
Affiliation:
Center for International Forestry Research (CIFOR), Lima, Perú Universidad Nacional Amazónica de Madre de Dios (UNAMAD), Facultad de Ingeniería Forestal y Medio Ambiente, Puerto Maldonado, Madre de Dios, Perú
Luis Alberto Meza Vega
Affiliation:
Center for International Forestry Research (CIFOR), Lima, Perú Universidad Nacional Amazónica de Madre de Dios (UNAMAD), Facultad de Ingeniería Forestal y Medio Ambiente, Puerto Maldonado, Madre de Dios, Perú
Roger Quenta Hancco
Affiliation:
Center for International Forestry Research (CIFOR), Lima, Perú Universidad Nacional Amazónica de Madre de Dios (UNAMAD), Facultad de Ingeniería Forestal y Medio Ambiente, Puerto Maldonado, Madre de Dios, Perú
Olivia Revilla Vera
Affiliation:
Center for International Forestry Research (CIFOR), Lima, Perú Universidad Nacional Amazónica de Madre de Dios (UNAMAD), Facultad de Ingeniería Forestal y Medio Ambiente, Puerto Maldonado, Madre de Dios, Perú
Jonatan Frank Valera Tito
Affiliation:
Center for International Forestry Research (CIFOR), Lima, Perú Universidad Nacional Amazónica de Madre de Dios (UNAMAD), Facultad de Ingeniería Forestal y Medio Ambiente, Puerto Maldonado, Madre de Dios, Perú
Betxy Tabita Villarroel Panduro
Affiliation:
Center for International Forestry Research (CIFOR), Lima, Perú Universidad Nacional Amazónica de Madre de Dios (UNAMAD), Facultad de Ingeniería Forestal y Medio Ambiente, Puerto Maldonado, Madre de Dios, Perú
Juan José Yucra Salas
Affiliation:
Center for International Forestry Research (CIFOR), Lima, Perú Universidad Nacional Amazónica de Madre de Dios (UNAMAD), Facultad de Ingeniería Forestal y Medio Ambiente, Puerto Maldonado, Madre de Dios, Perú
*
*Corresponding author. Email: crockwel@fiu.edu

Abstract:

To date, the spatial distribution pattern and density of Brazil nut trees in logged forest stands is unclear across the Amazon basin. We asked the following questions: (1) What are the densities and spatial distributions of Brazil nut juveniles (10 ≤ dbh < 40 cm) and adults (≥ 40 cm dbh) in three selectively logged Brazil nut concessions (1413 ha sampled) in Madre de Dios, Peru; (2) What is the spatial relationship between adults and juveniles (10 ≤ dbh < 30 cm); and (3) What is the spatial relationship between juveniles (10 ≤ dbh <30 cm) and cut stumps (≥ 10 y)? Spatial analyses were conducted using statistics derived from Ripley's K function. Juveniles were aggregated in all three concessions. Results for adult populations rejected the null hypothesis of a random distribution among trees ≥ 40 cm dbh. We did not find an attraction between juveniles and cut-stump locations, nor between adults and juveniles. The strong peaks of aggregation for juveniles and adult Brazil nuts in this study occurred at long distances (300–900 m), suggesting multiple tree canopy gaps as drivers of spatial distribution patterns, either via natural or anthropogenic sources. Our data contribute to a more thorough understanding of Brazil nut population structure in disturbed forests in south-western Amazonia.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALEXIADES, M. N. & PELUSO, D. M. 2009. Plants of the ancestors, plants of the outsiders: Ese Eja history, migration, and medicinal plants. Pp. 220248 in Alexiades, M. N. (ed.). Mobility and migration in indigenous Amazonia: contemporary ethnoecological perspectives. Berghahn Books, New York. 304 pp.Google Scholar
ASNER, G. P., KELLER, M. & SILVA, J. N. 2004. Spatial and temporal dynamics of forest canopy gaps following selective logging in the eastern Amazon. Global Change Biology 10:765783.Google Scholar
ASNER, G. P., KNAPP, D. E., BALAJII, A. & PÁEZ-ACOSTA, G. 2009. Automated mapping of tropical deforestation and forest degradation: CLASlite. Journal of Applied Remote Sensing 3:033543.Google Scholar
ASNER, G. P., KELLNER, J. R., KENNEDY-BOWDOIN, T., KNAPP, D. E., ANDERSON, C. & MARTIN, R. E. 2013. Forest canopy gap distributions in the southern Peruvian Amazon. PLoS ONE 8: e60875.CrossRefGoogle ScholarPubMed
BALÉE, W. 1989. The culture of Amazonian Forest. Advances in Economic Botany 7:121.Google Scholar
BLEHER, B. & BÖHNING-GAESE, K. 2001. Consequences of frugivore diversity for seed dispersal, seedling establishment and the spatial pattern of seedlings and trees. Oecologia 129:385394.Google Scholar
BRIENEN, R. J. W. & ZUIDEMA, P. A. 2006. Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. Journal of Ecology 94:481493.Google Scholar
CARDÓ, A. A., SEQUEIRA, V. A. S. & TORRES PADILLA, J. A. 2002. Mejoramiento del sistema de cosecha de castaña (Bertholletia excelsa) en Madre de Dios y sus impactos en la economía del productor castañero. Asociación para la Conservación de la Cuenca Amazónica, Proyecto Conservando Castañales, Puerto Maldonado, Madre de Dios, Peru, 77 pp.Google Scholar
CHÁVEZ, A., GUARIGUATA, M. R., CRONKLETON, P., MENTON, M., CAPELLA, J. L., ARAUJO, J. P. & QUAEDVLIEG, J. 2012. Superposición espacial en la zonificación de bosques en Madre de Dios. CIFOR Infobrief no. 58, Bogor, Indonesia.Google Scholar
CONNELL, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Pp. 298312 in den Boer, P. J. & Gradwell, G. R. (eds). Dynamics of populations. PUDOC, Wageningen.Google Scholar
COSSÍO-SOLANO, R. E., GUARIGUATA, M. R., MENTON, M., CAPELLA, J. L., RÍOS, L. & PEÑA, P. 2011. El Aprovechamiento de Madera en las Concesiones Castañeras (Bertholletia excelsa) en Madre de Dios, Perú: Un Análisis de su Situación Normativa. Documento de Trabajo 56 CIFOR. Bogor, Indonesia.Google Scholar
COTTA, J. N., KAINER, K. A., WADT, L. H. O. & STAUDHAMMER, C. L. 2008. Shifting cultivation effects on Brazil nut (Bertholletia excelsa) regeneration. Forest Ecology and Management 256:2835.Google Scholar
CRONKLETON, P., GUARIGUATA, M. R. & ALBORNOZ, M. A. 2012. Multiple use forestry planning: timber and Brazil nut management in the community forests of Northern Bolivia. Forest Ecology and Management 268:4956.Google Scholar
DELANEY, M., BROWN, S., LUGO, A. E., TORRES-LEZAMA, A. & BELLO QUINTERO, N. 1998. The quantity and turnover of dead wood in permanent forest plots in six life zones of Venezuela. Biotropica 30:211.Google Scholar
D'OLIVEIRA, M. V. N. 2000. Artificial regeneration in gaps and skidding trails after mechanised forest exploitation in Acre, Brazil. Forest Ecology and Management 127:6776.Google Scholar
DUCHELLE, A. E., GUARIGUATA, M. R., LESS, G., ALBORNOZ, M. A. & CHÁVEZ, A. 2012. Evaluating the opportunities and limitations of Brazil nuts and timber in Western Amazonia. Forest Ecology and Management 268:3948.Google Scholar
FREDERICKSEN, T. S. & PUTZ, F. E. 2003. Silvicultural intensification for tropical forest conservation. Biodiversity and Conservation 12:14451453.CrossRefGoogle Scholar
GOREAUD, F. & PÉLISSIER, R. 1999. On explicit formulas of edge effect correction for Ripley's K-function. Journal of Vegetation Science 10:433438.Google Scholar
GOREAUD, F. & PÉLISSIER, R. 2003. Avoiding misinterpretation of biotic interactions with the intertype K12-function: population independence vs. random labelling hypotheses. Journal of Vegetation Science 14:681692.Google Scholar
GRISCOM, B. W. & ASHTON, P. M. S. 2006. A self-perpetuating bamboo disturbance cycle in a neotropical forest. Journal of Tropical Ecology 22:587597.Google Scholar
GUARIGUATA, M. R., LICONA, J. C., MOSTACEDO, B. & CRONKLETON, P. 2009. Damage to Brazil nut trees (Bertholletia excelsa) during selective timber harvesting in Northern Bolivia. Forest Ecology and Management 258:788793.Google Scholar
HAASE, P. 1995. Spatial pattern analysis in ecology based on Ripley's K-function: introduction and methods of edge correction. Journal of Vegetation Science 6:575582.Google Scholar
HAUGAASEN, T. & HAUGAASEN, J. M. 2010. Cache pilferage may be prominent in Neotropical forests. Mammalia 74:423425.Google Scholar
HAUGAASEN, J. M. T., HAUGAASEN, T., PERES, C. A., GRIBEL, R. & WEGGE, P. 2012. Fruit removal and natural seed dispersal of the Brazil nut tree (Bertholletia excelsa) in Central Amazonia, Brazil. Biotropica 44:205210.Google Scholar
HERAULT, B., OAULLET, J., BLANC, L., WAGNER, F. & BARALOTO, C. 2010a. Growth responses of neotropical trees to logging gaps. Journal of Applied Ecology 47:821831.Google Scholar
HERAULT, B., BEAUCHÊNE, J., MULLER, F., WAGNER, F., BARALOTO, C., BLANC, L. & MARTIN, J.-M. 2010b. Modeling decay rates of dead wood in a neotropical forest. Oecologia 164:243251.Google Scholar
HERRERO-JÁUREGUI, C., SIST, P. & CASADO, M. A. 2012. Population structure of two low-density neotropical tree species under different management systems. Forest Ecology and Management 280: 3139.Google Scholar
IIAP (Instituto de Investigaciones de la Amazonía Peruana) & CTAR (Transitorio de Administración Regional Madre de Dios). 2001. Madre de Dios: Camino al Desarrollo Sostenible. Propuestas de Zonificación Ecológica Económica como Base para el Ordenamiento Territorial. IIAP, Lima. 135 pp.Google Scholar
JANSEN, P. A. & ZUIDEMA, P. A. 2001. Logging, seed dispersal by vertebrates, and natural regeneration of tropical timber trees. Pp. 3560 in Fimbel, R. A., Grajal, A. & Robinson, J.G. (eds). The cutting edge: conserving wildlife in logged tropical forests. Columbia University Press, New York.Google Scholar
JANSEN, P. A., HIRSCH, B. T., EMSENS, W. J., ZAMORA-GUTIERREZ, V., WIKELSKI, M. & KAYS, R. 2012. Thieving rodents as substitute dispersers of megafaunal seeds. Proceedings of the National Academy of Sciences USA 109:1261012615.CrossRefGoogle ScholarPubMed
JANZEN, D. H. 1970. Herbivores and the number of tree species in tropical forests. American Naturalist 104:501528.Google Scholar
JOHN, R., DALLING, J. W., HARMS, K. E., YAVITT, J. B., STALLARD, R. F., MIRABELLO, M., HUBBELL, S. P., VALENCIA, R., NAVARRETE, H., VALLEJO, M. & FOSTER, R. B. 2007. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences USA 104: 864869.Google Scholar
KAINER, K. A., DURYEA, M. L., DE MACEDO, N. C. & WILLIAMS, K. 1998. Brazil nut seedling establishment and autecology in extractive reserves of Acre, Brazil. Ecological Applications 8:397410.Google Scholar
KAINER, K. A., WADT, L. H. O. & STAUDHAMMER, C. L. 2014. Testing a silvicultural recommendation: Brazil nut responses 10 years after liana cutting. Journal of Applied Ecology 51:655663.Google Scholar
LEDO, A., CONDÉS, S. & MONTES, F. 2011. Intertype mark correlation function: a new tool for the analysis of species interactions. Ecological Modelling 222:580587.Google Scholar
MARCON, E., TRAISSAC, S. & LANG, G. 2013. A statistical test for Ripley's function rejection of Poisson null hypothesis. International Scholarly Research Notices 2013:19.Google Scholar
MCMICHAEL, C. H., PIPERNO, D. R., BUSH, M. B., SILMAN, M. R., ZIMMERMAN, A. R., RACZKA, M. F. & LOBATO, L. C. 2012. Sparse pre-Columbian human habitation in western Amazonia. Science 336:14291431.Google Scholar
MOLL-ROCEK, J., GILBERT, M. E. & BROADBENT, E. N. 2014. Brazil nut (Bertholletia excelsa, Lecythidaceae) regeneration in logging gaps in the Peruvian Amazon. International Journal of Forestry Research 2014: 420764.Google Scholar
MORI, S. A. & PRANCE, G. T. 1990. Taxonomy, ecology, and economic botany of the Brazil nut (Bertholletia excelsa Humb. and Bonpl: Lecythidaceae). Advances in Economic Botany 8:130150.Google Scholar
MYERS, G. P., NEWTON, A. C. & MELGAREJO, O. 2000. The influence of canopy gap size on natural regeneration of Brazil nut (Bertholletia excelsa) in Bolivia. Forest Ecology and Management 127: 119128.Google Scholar
NATHAN, R. & MULLER-LANDAU, H. C. 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology and Evolution 15:278285.CrossRefGoogle ScholarPubMed
NELSON, B. W., KAPOS, V., ADAMS, J. B., OLIVEIRA, W. J. & BRAUN, O. P. G. 1994. Forest disturbance by large blowdowns in the Brazilian Amazon. Ecology 75:853858.Google Scholar
NEPSTAD, D., BROWN, I., LUZ, L., ALECHANDRE, A. & VIANA, V. 1992. Biotic impoverishment of Amazonian forests by rubber tappers, loggers, and cattle ranchers. Advances in Economic Botany 9: 114.Google Scholar
ORTIZ, E. 2002. Brazil nut (Bertholletia excelsa). Pp. 6174 in Shanley, P., Pierce, A. R., Laird, S. A. & Guillen, A. (eds). Tapping the green market: certification and management of non-timber forest products. Earthscan, London.Google Scholar
PEÑA-CLAROS, M., FREDERICKSEN, T. S., ALARCÓN, A., BLATE, G. M., CHOQUE, U., LEAÑO, C., LICONA, J. C., MOSTACEDO, B., PARIONA, W., VILLEGAS, Z. & PUTZ, F. E. 2008. Beyond reduced-impact logging: silvicultural treatments to increase growth rates of tropical trees. Forest Ecology and Management 256:14581467.Google Scholar
PERES, C. A. & BAIDER, C. 1997. Seed dispersal, spatial distribution and population structure of Brazil nut trees (Bertholletia excelsa) in southeastern Amazonia. Journal of Tropical Ecology 13:595616.Google Scholar
PERES, C. A., BAIDER, C., ZUIDEMA, P. A., WADT, L. H. O., KAINER, K. A., GOMES-SILVA, D. A. P., SALOMÃO, R. P., SIMÕES, L. L., FRANCIOSI, E. R. N., VALVERDE, F. C., GRIBEL, R., SHEPARD, G. H., KANASHIRO, M., COVENTRY, P., YU, D. W., WATKINSON, A. R. & FRECKLETON, R. P. 2003. Demographic threats to the sustainability of Brazil nut exploitation. Science 302:21122114.CrossRefGoogle Scholar
PERZ, S. G., QIU, Y., XIA, Y., SOUTHWORTH, J., MARSIK, M., ROCHA, K., PASSOS, V., ROJAS, D., ALARCÓN, G., BARNES, G. & BARALOTO, C. 2013. Trans-boundary infrastructure and land cover change: highway paving and community-level deforestation in a tri-national frontier in the Amazon. Land Use Policy 34:2741.Google Scholar
RIBEIRO, M. B. N., JEROZOLIMSKI, A., DE ROBERT, P., SALLES, N. V., KAYAPÓ, B., PIMENTEL, T. P. & MAGNUSSON, W. E. 2014. Anthropogenic landscape in southeastern Amazonia: contemporary impacts of low-intensity harvesting and dispersal of Brazil nuts by the Kayapó Indigenous people. PLoS ONE 9: e102187.Google Scholar
RIPLEY, B. D. 1977. Modelling spatial patterns (with discussion). Journal of the Royal Statistical Society. Series B (Methodological) 39:172212.Google Scholar
ROCKWELL, C. A., GUARIGUATA, M. R., MENTON, M., QUISPE, E. A., QUAEDVLIEG, J., WARREN-THOMAS, E., SILVA, H. F., ROJAS, E. E. J., ARRUNATEGUI, J. A. H. K., VEGA, L. A. M., VERA, O. R., HANCCO, R. Q., TITO, J. F. V., PANDURO, B. T. V. & SALAS, J. J. Y. 2015. Nut production in Bertholletia excelsa across a logged forest mosaic: implications for multiple forest use. PLoS ONE 10 (8): e0135464.Google Scholar
SALOMÃO, R. P. 1991. Estrutura e densidade de Bertholletia excelsa H. and B. (“Castanheira”) nas regiões de Carajás e Marabá, Estado do Pará. Boletim do Museu Paraense Emilio Goeldi. Serie Botânica 7:4768.Google Scholar
SCHÖNGART, J., GRIBEL, R., FERREIRA DA FONSECA-JUNIOR, S. & HAUGAASEN, T. 2015. Age and growth patterns of Brazil nut trees (Bertholletia excelsa Bonpl.) in Amazonia, Brazil. Biotropica 47:550558.Google Scholar
SCOLES, R. & GRIBEL, R. 2011. Population structure of Brazil nut (Bertholletia excelsa, Lecythidaceae) stands in two areas with different occupation histories in the Brazilian Amazon. Human Ecology 39:455464.Google Scholar
SCOLES, R. & GRIBEL, R. 2012. The regeneration of Brazil nut trees in relation to nut harvest intensity in the Trombetas River valley of Northern Amazonia, Brazil. Forest Ecology and Management 265:7181.Google Scholar
SCOLES, R. & GRIBEL, R. 2015. Human influence on the regeneration of the Brazil nut tree (Bertholletia excelsa Bonpl., Lecythidaceae) at Capanã Grande Lake, Manicoré, Amazonas, Brazil. Human Ecology 43:843854.Google Scholar
SHEPARD, G. H. & RAMIREZ, H. 2011. “Made in Brazil”: human dispersal of the Brazil nut (Bertholletia excelsa, Lecythidaceae) in ancient Amazonia. Economic Botany 65:4465.Google Scholar
SORIANO, M., KAINER, K. A., STAUDHAMMER, C. L. & SORIANO, E. 2012. Implementing multiple forest management in Brazil nut-rich community forests: effects of logging on natural regeneration and forest disturbance. Forest Ecology and Management 268:3948.Google Scholar
STAUDHAMMER, C. L., WADT, L. H. O. & KAINER, K. A. 2013. Tradeoffs in basal area growth and reproduction shift over the lifetime of a long-lived tropical species. Oecologia 173:4557.Google Scholar
SWAINE, M. D. & HALL, J. B. 1987. Early succession on cleared forest land in Ghana. Journal of Ecology 71:601627.Google Scholar
SWAINE, M. D., HALL, J. B. & ALEXANDER, I. J. 1987. Tree population dynamics at Kade, Ghana (1968–82). Journal of Tropical Ecology 3:331345.Google Scholar
TERBORGH, J., FLORES N, C., MUELLER, P. & DAVENPORT, L. 1997. Estimating the ages of successional stands of tropical trees from growth increments. Journal of Tropical Ecology 13:833856.Google Scholar
THOMAS, E., ALCÁZAR CAICEDO, C., LOO, J. & KINDT, R. 2014. The distribution of the Brazil nut (Bertholletia excelsa) through time: from range contraction in glacial refugia, over human-mediated expansion, to anthropogenic climate change. Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais 9:267291.Google Scholar
THOMAS, E., ALCÁZAR CAICEDO, C., MCMICHAEL, C. H., CORVERA, R. & LOO, J. 2015. Uncovering spatial patterns in the natural and human history of Brazil nut (Bertholletia excelsa) across the Amazon Basin. Journal of Biogeography 42:13671382.Google Scholar
TICKTIN, T. 2004. The ecological implications of harvesting non-timber forest products. Journal of Applied Ecology 41:1121.Google Scholar
TICKTIN, T., GANESAN, R., PARAMESHA, M. & SETTY, S. 2012. Disentangling the effects of multiple anthropogenic drivers on the decline of two tropical dry forest trees. Journal of Applied Ecology 49:774784.Google Scholar
TOBLER, M. W., CARRILLO-PERCASTEGUI, S. E. & POWELL, G. 2009. Habitat use, activity patterns and use of mineral licks by five species of ungulate in south-eastern Peru. Journal of Tropical Ecology 25:261270.Google Scholar
TRAISSAC, S. & PASCAL, J.-P. 2014. Birth and life of tree aggregates in tropical forest: hypotheses on population dynamics of an aggregated shade-tolerant species. Journal of Vegetation Science 25: 491502.Google Scholar
VANDER WALL, S., FORGET, P.-M., LAMBERT, J. E. & HULME, P. E. 2005. Seed fate pathways: filling the gap between parent and offspring. Pp. 18 in Forget, P.-M., Lambert, J., Hulme, P. & Vander Wall, S. (eds). Seed fate: predation, dispersal and seedling establishment. CABI Publishing, Wallingford.Google Scholar
WADT, L. H. O., KAINER, K. A. & GOMES-SILVA, D. A. P. 2005 . Population structure and nut yield of a Bertholletia excelsa stand in Southwestern Amazonia. Forest Ecology and Management 22:371384.Google Scholar
ZUIDEMA, P. A. 2003. Ecology and management of the Brazil nut tree (Bertholletia excelsa), PROMAB (Programa Manejo de Bosques de la Amazonia Boliviana) Scientific Series 6. PROMAB, Riberalta, Bolivia.Google Scholar
ZUIDEMA, P. A. & BOOT, R. G. A. 2002. Demography of the Brazil nut tree (Bertholletia excelsa) in the Bolivian Amazon: impact of seed extraction on recruitment and population dynamics. Journal of Tropical Ecology 18:131.Google Scholar