Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T13:09:53.508Z Has data issue: false hasContentIssue false

Spatiotemporal variation in phyllostomid bat assemblages over a successional gradient in a tropical dry forest in southeastern Brazil

Published online by Cambridge University Press:  02 January 2014

Luiz Alberto Dolabela Falcão*
Affiliation:
Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Montes Claros-MG, Brazil, CP 126, CEP 39401-089
Mário Marcos do Espírito-Santo
Affiliation:
Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Montes Claros-MG, Brazil, CP 126, CEP 39401-089
Lemuel Olívio Leite
Affiliation:
Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Montes Claros-MG, Brazil, CP 126, CEP 39401-089
Raphael Neiva Souza Lima Garro
Affiliation:
Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Montes Claros-MG, Brazil, CP 126, CEP 39401-089
Luis Daniel Avila-Cabadilla
Affiliation:
Centro de Investigaciones en Ecosistemas, Universidad Nacional Autonoma de Mexico, Apartado Postal 27-3 (Xangari), Morelia, Michoacan 58089, Mexico Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
Kathryn Elizabeth Stoner
Affiliation:
Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd., MSC 158, Kingsville, TX 78363–8202
*
1Corresponding author. Email: luizdolabelafalcao@gmail.com

Abstract:

The aim of this study was to investigate the spatiotemporal variation in richness, abundance, structure and composition of phyllostomid bats over a successional gradient in a tropical dry forest in south-eastern Brazil. Four successional stages (pasture, early, intermediate and late) were sampled in the northern part of the state of Minas Gerais. Bats were sampled using mist nets at three sites for each of the four successional stages (12 sites in total) during eight periods between 2007 and 2009. A total of 537 individuals were captured (29 recaptured), distributed among four families and 22 species. Bat abundance and richness varied in space, being higher in the late-successional stage, and over time, being significantly lower during the dry season. When compared between guilds, only the abundance of omnivores varied significantly during the sampled months. Our results demonstrate that areas of late-successional stages showed higher bat richness and abundance in comparison with areas undergoing secondary succession. Our results also suggest the use of early-successional areas as flying routes by bats can lead to failure to detect differences in bat composition within successional gradients. We suggest future studies should assimilate landscape-level analyses into their studies to better evaluate the effects of successional gradients on bat assemblages.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AGUIAR, L. M. D. S. & MARINHO-FILHO, J. 2004. Activity patterns of nine phyllostomid bat species in a fragment of the Atlantic Forest in southeastern Brazil. Revista Brasileira de Zoologia 21:385390.Google Scholar
AGUIAR, L. M. S. & MARINHO-FILHO, J. 2007. Bat frugivory in a remnant of Southeastern Brazilian Atlantic forest. Acta Chiropterologica 9:251260.Google Scholar
ANTUNES, F. V. 1994. Climatic characterization – Caatinga of Minas Gerais State. Informe Agropecuário 17:1519.Google Scholar
AVILA-CABADILLA, L. D., STONER, K. E., HENRY, M. & AÑORVE, M. Y. A. 2009. Composition, structure and diversity of phyllostomid bat assemblages in different successional stages of a tropical dry forest. Forest Ecology and Management 258:986996.CrossRefGoogle Scholar
AVILA-CABADILLA, L. D., SANCHEZ-AZOFEIFA, G. A., STONER, K. E., ALVAREZ-AÑORVE, M. Y., QUESADA, M. & PORTILLO-QUINTERO, C. A. 2012. Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forests. PloS One 7:e35228.CrossRefGoogle ScholarPubMed
BERNARD, E. 2002. Diet, activity and reproduction of bat species (Mammalia, Chiroptera) in Central Amazonia, Brazil. Revista Brasileira de Zoociencias 19:173188.CrossRefGoogle Scholar
BERNARD, E. & FENTON, M. B. 2003. Bat mobility and roosts in a fragmented landscape in Central Amazonia, Brazil. Biotropica 35:262.Google Scholar
BERNARD, E. & FENTON, M. 2007. Bats in a fragmented landscape: species composition, diversity and habitat interactions in savannas of Santarém, Central Amazonia, Brazil. Biological Conservation 134:332343.Google Scholar
BULLOCK, S. H. 1995. Plant reproduction in neotropical dry forests. Pp. 277297 in Bullock, S. H., Mooney, H. A. & Medina, E. (eds.). Seasonally dry tropical forests. Cambridge University Press, Cambridge.Google Scholar
CASTRO-LUNA, A. A., SOSA, V. J. & CASTILLO-CAMPOS, G. 2007. Bat diversity and abundance associated with the degree of secondary succession in a tropical forest mosaic in south-eastern Mexico. Animal Conservation 10:219228.CrossRefGoogle Scholar
CLARKE, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18:117143.CrossRefGoogle Scholar
CRAWLEY, M. J. 2007. The R book. John Wiley & Sons, Chichester. 942 pp.CrossRefGoogle Scholar
CUNTO, G. C. & BERNARD, E. 2012. Neotropical bats as indicators of environmental disturbance: what is the emerging message? Acta Chiropterologica 14:143151.CrossRefGoogle Scholar
FALCÃO, F. D. C., REBÊLO, V. F. & TALAMONI, S. A. 2003. Structure of a bat assemblage (Mammalia, Chiroptera) in Serra do Caraça Reserve, South-east Brazil. Revista Brasileira de Zoologia 20:347350.Google Scholar
FENTON, M., ACHARYA, L., AUDET, D., HICKEY, M., MERRIMAN, C., OBRIST, M., SYME, D. & ADKINS, B. 1992. Phyllostomid bats (Chiroptera: Phyllostomidae) as indicators of habitat disruption in the Neotropics. Biotropica 24:440446.CrossRefGoogle Scholar
FLEMING, T. H. 1986. The structure of neotropical bat communities: a preliminary analysis. Revista Chilena de Historia Natural 59:135150.Google Scholar
GARDNER, A. L. 2007. Order Chiroptera. Pp. 187–184 in Gardner, A. L. (ed.). Mammals of South America. The University of Chicago Press, Chicago.Google Scholar
GREGORIN, R. & TADDEI, V. A. 2002. Chave artificial para a identificação de molossídeos brasileiros (Mammalia, Chiroptera). Mastozoología Neotropical 9:1332.Google Scholar
GREGORIN, R., CARMIGNOTTO, A. P. & PERCEQUILLO, A. R. 2008. Quirópteros do Parque Nacional da Serra das Confusões, Piauí, nordeste do Brasil. Chiroptera Neotropical 14:366383.Google Scholar
HAMMER, O., HARPER, D. A. T. & RYAN, P. D. 2001. PAST: palaeontological statistic software package for education and data analysis. Paleontologia Electronica 4:19.Google Scholar
HENRY, M., PONS, J.-M. & COSSON, J.-F. 2007. Foraging behaviour of a frugivorous bat helps bridge landscape connectivity and ecological processes in a fragmented rainforest. Journal of Animal Ecology 76:801813.Google Scholar
IEF (Instituto Estadual de Florestas). 2000. Parecer técnico para a criação do Parque Estadual da Mata Seca. Instituto Estadual de Florestas, Belo Horizonte. 18 pp.Google Scholar
MADEIRA, B. G., ESPÍRITO-SANTO, M. M., NETO, S. D., NUNES, Y. R. F., ARTURO SÁNCHEZ AZOFEIFA, G., WILSON FERNANDES, G. & QUESADA, M. 2009. Changes in tree and liana communities along a successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecology 201:291304.CrossRefGoogle Scholar
MANCINA, C. A., GARCÍA-RIVERA, L. & CAPOTE, R. T. 2007. Habitat use by phyllostomid bat assemblages in secondary forests of the “Sierra del Rosario” Biosphere Reserve, Cuba. Acta Chiropterologica 9:203218.CrossRefGoogle Scholar
MEDELLÍN, R. A., ARITA, H. T. & SÁNCHEZ, H. O. 1997. Identificación de los Murciélagos de México. Asociación Mexicana de Mastozoología, A.C., Publicaciones Especiales, 2.Google Scholar
MEDELLÍN, R. A., EQUIHUA, M. & AMIN, M. A. 2000. Bat diversity and abundance as indicators of disturbance in Neotropical rainforests. Conservation Biology 14:16661675.Google Scholar
MEYER, C. F. J. & KALKO, E. K. V. 2008. Assemblage-level responses of phyllostomid bats to tropical forest fragmentation: land-bridge islands as a model system. Journal of Biogeography 35:17111726.Google Scholar
MORENO, C. E. & HALFFTER, G. 2000. Assessing the completeness of bat biodiversity inventories using species accumulation curves. Journal of Applied Ecology 37:149158.Google Scholar
MORRISON, D. W. 1978. Lunar phobia in a Neotropical fruit bat, Artibeus jamaicensis (Chiroptera: Phyllostomidae). Animal Behavior 26:852855.Google Scholar
MURPHY, P. G. & LUGO, A. E. 1986. Ecology of tropical dry forest. Annual Review of Ecology and Systematics 17:6788.CrossRefGoogle Scholar
NEVES, F. S., SILVA, J. O., ESPIRITO-SANTO, M. M. & FERNANDES, G. W. (in press). Insect herbivores and leaf damage along successional and vertical gradients in a tropical dry forest. Biotropica.Google Scholar
PEEL, M. C., FINLAYSON, B. L. & MCMAHON, T. A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions 4:439473.Google Scholar
PEREIRA, M. J. R., MARQUES, J. T. & PALMEIRIM, J. M. 2010. Ecological responses of frugivorous bats to seasonal fluctuation in fruit availability in Amazonian forests. Biotropica 42:680687.CrossRefGoogle Scholar
PEZZINI, F. F., BRANDÃO, D. O., RANIERI, B. D., ESPÍRITO-SANTO, M. M., JACOBI, C. M. & FERNANDES, G. W. 2008. Polinização, dispersão de sementes e fenologia das espécies arbóreas no Parque Estadual da Mata Seca. MG – Biota 1:3745.Google Scholar
REIS, N. R. D., PERACCHI, A. L., PEDRO, W. A. & LIMA, I. P. (eds.). 2007. Morcegos do Brasil. UEL Press, Londrina City. 253 pp.Google Scholar
SANCHEZ-AZOFEIFA, G. A., QUESADA, M., RODRIGUEZ, J. P., NASSAR, J. M., STONER, K. E., CASTILLO, A., GARVIN, T., ZENT, E. L., CALVO-ALVARADO, J. C., KALACSKA, M. E. R., FAJARDO, L., GAMON, J. A. & CUEVAS-REYES, P. 2005. Research priorities for neotropical dry forests. Biotropica 37:477485.Google Scholar
SAZIMA, I. & SAZIMA, M. 1977. Solitary and group foraging: two flower-visiting patterns of the lesser spear-nosed bat Phyllostomus discolor. Biotropica 9:213215.CrossRefGoogle Scholar
STONER, K. E. 2001. Differential habitat use and reproductive patterns of frugivorous bats in tropical dry forest of northwestern Costa Rica. Canadian Journal of Zoology 79:16261633.Google Scholar
STONER, K. E. 2005. Phyllostomid bat community structure and abundance in two contrasting tropical dry forests. Biotropica 37:591599.Google Scholar
TIMM, R. M. & LAVAL, R. K. 1998. A field key to the bats of Costa Rica. Center of Latin American Studies 22:130.Google Scholar
VIEIRA, D. L. M. & SCARIOT, A. 2006. Principles of natural regeneration of tropical dry forests for restoration. Restoration Ecology 14:1120.Google Scholar
WILLIG, M. R., PRESLEY, S. J., BLOCH, C. P., HICE, C. L., YANOVIAK, S. P., DÍAZ, M. M., CHAUCA, L. A., PACHECO, V. & WEAVER, S. C. 2007. Phyllostomid bats of lowland Amazonia: effects of habitat alteration on abundance. Biotropica 39:737746.Google Scholar
ZORTÉA, M. & ALHO, C. J. R. 2008. Bat diversity of a Cerrado habitat in central Brazil. Biodiversity and Conservation 17:791805.Google Scholar