Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T01:44:27.741Z Has data issue: false hasContentIssue false

Trends in leaf traits, litter dynamics and associated nutrient cycling along a secondary successional chronosequence of semi-evergreen tropical forest in South-Eastern Mexico

Published online by Cambridge University Press:  21 November 2018

Sarai Sánchez-Silva
Affiliation:
Department of Sustainability Science, El Colegio de la Frontera Sur, Unidad Campeche, Av. Rancho Polígono 2ª, Ciudad Industrial Lerma, CP 24500, Campeche, Camp, México
Bernardus H.J. De Jong*
Affiliation:
Department of Sustainability Science, El Colegio de la Frontera Sur, Unidad Campeche, Av. Rancho Polígono 2ª, Ciudad Industrial Lerma, CP 24500, Campeche, Camp, México
Deb R. Aryal
Affiliation:
Cátedra CONACyT, Agronomic Sciences Faculty, Universidad Autónoma de Chiapas, Villaflores, Chiapas, Mexico
Esperanza Huerta-Lwanga
Affiliation:
Dept of Agriculture, Society and Environment, El Colegio de la Frontera Sur, Unidad Campeche, Av. Rancho Polígono 2ª, Ciudad Industrial Lerma, CP 24500, Campeche, Camp, México
Jorge Mendoza-Vega
Affiliation:
Dept of Agriculture, Society and Environment, El Colegio de la Frontera Sur, Unidad Campeche, Av. Rancho Polígono 2ª, Ciudad Industrial Lerma, CP 24500, Campeche, Camp, México
*
*Corresponding author. Email: bjong@ecosur.mx

Abstract:

Trends in structural and chemical leaf traits along a chronosequence of semi-evergreen tropical forest and their correlation with litter production and decomposition and associated carbon (C) and nitrogen (N) fluxes were assessed. Leaves of 15 dominant species in each plot were collected to measure leaf area, specific leaf area (SLA), C and N concentration and C:N ratio. Litterfall was measured and litter decomposition experiments were set up in 16 experimental plots in a chronosequence of secondary and mature forest. All five leaf traits combined discriminated the secondary forests from mature forest. SLA, N and C:N were significantly correlated to litter decomposition rates. Litter decomposition was significantly slower in mature forest compared with secondary forests. The N concentration of litter was lowest during the dry season, when litterfall was highest. N concentration in fresh leaves was higher than in litter, indicating that N is re-absorbed before leaf abscission. Leaf dynamics and associated nutrient cycling differ significantly between secondary forests and mature forest. Ecosystem-level leaf structural and chemical traits are good predictors of the stage of the forest and explain well the differences in decomposition rates between secondary and primary forests.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AIDE, T. M., ZIMMERMAN, J. K., PASCARELLA, J. B., RIVERA, L. & MERCADO-VEGA, H. 2000. Forest regeneration in a chronosequence of tropical abandoned pasture: implications for restoration ecology. Restoration Ecology 4:328338.Google Scholar
ARYAL, D. R., DE JONG, B. H. J., OCHOA-GAONA, S., ESPARZA-OLGUIN, L. & MENDOZA-VEGA, J. 2014. Carbon stocks and changes in tropical secondary forests of southern Mexico. Agriculture, Ecosystems and Environment 195:220230.Google Scholar
ARYAL, D. R., DE JONG, B. H. J., OCHOA-GAONA, S., MENDOZA-V, J. & ESPARZA-OLGUIN, L. 2015. Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico. Nutrient Cycling in Agroecosystems 103:4560.Google Scholar
BAKKER, M. A., CARREÑO, R. G. & POORTER, L. 2011. Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Functional Ecology 25:473483.Google Scholar
BAUTISTA, F., PALACIO, A. G., QUINTANA, P. & ZINCK, J. A. 2011. Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Geomorphology 135:308321.Google Scholar
BERG, B. & MCCLAUGHERTY, C. 2008. Plant litter: decomposition, humus formation and carbon sequestration. (Second edition). Springer, Berlin. 315 pp.Google Scholar
BERGLUND, S. L. & ÅGREN, G. I. 2012. When will litter mixtures decompose faster or slower than individual litters? A model for two litters. Oikos 121:11121120.Google Scholar
BERNIER, P., HANSON, P. J. & CURTIS, P. S. 2008. Measuring litterfall and branchfall. Pp. 91100 in Hoover, C. M. (ed.). Field measurements for forest carbon monitoring. Springer, Berlin.Google Scholar
BOUKILI, V. K. & CHAZDON, R. L. 2016. Environmental filtering, local site factors and landscape context drive changes in functional trait composition during tropical forest succession. Perspectives in Plant Ecology, Evolution and Systematics 24:3747.Google Scholar
CHAVEZ, V. B. M., GONZALEZ, R. A., ETCHEVERS, J. D., OYAMA, K. & GARCÍA-O, F. 2015. Foliar nutrient resorption constrains soil nutrient transformations under two native oak species in a temperate deciduous forest in Mexico. European Journal of Forest Restoration 134:803817.Google Scholar
CHAZDON, R. L. 2014. Second growth: the promise of tropical forest regeneration in an age of deforestation. The University of Chicago Press, Chicago. 449 pp.Google Scholar
CLEVELAND, C. C. & LIPTZIN, D. 2007. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235252.Google Scholar
CORBEELS, M. 2001. Plant litter and decomposition: general concepts and model approaches. Pp. 124129 in Kirshbaum, M. U. F. & Muller, R. (eds). Net ecosystem exchange: workshop proceedings, CRC for greenhouse accounting. CSIRO Forestry and Forest Products, Canberra.Google Scholar
CORNELISSEN, J. H. C., LAVOREL, S., GARNIER, E., DÍAZ, S., BUCHMANN, N., GURVICH, D. E., REICH, P. B., TER STEEGE, H., MORGAN, H. D., VAN DER HEIJDEN, M. G. A., PAUSAS, J. G. & POORTER, H. 2003. A handbook of protocols for standardised and easy measurements of plant functional traits worldwide. Australian Journal of Botany 51:335380.Google Scholar
CUEVAS, E. & MEDINA, E. 1986. Nutrient dynamics within Amazonian forest ecosystems. Oecologia 68:466472.Google Scholar
DA SILVA, L. S., PINHEIRO, T. G., CHAGAS-JR, A., MARQUES, M. I. & BATTIROLA, L. D. 2018. Temporal and spatial variation of Myriapoda (Diplopoda and Chilopoda) assemblages in a Neotropical floodplain. Forest Ecology and Management 429:189197.Google Scholar
DAWKINS, H. C & FIELD, D. R. O. 1978. A long term surveillance system for British woodland vegetation. C.F.I. Occasional Papers No. 1. University of Oxford, Oxford. 106 pp.Google Scholar
DRAKE, J. E., DAVIS, S. C., RAETZ, L. M. & DELUCIA, E. H. 2011. Mechanisms of age-related changes in forest production: the influence of physiological and successional changes. Global Change Biology 17:15221535.Google Scholar
FINERTY, G. E., DE BELLO, F., BÍLÁ, K., BERG, M. P., DIAS, A. T. C., PEZZATTI, G. B. & MORETTI, M. 2016. Exotic or not, leaf trait dissimilarity modulates the effect of dominant species on mixed litter decomposition. Journal of Ecology 104:14001409.Google Scholar
FRESCHET, G. T., AERTS, R. & CORNELISSEN, J. H. C. 2012. A plant economics spectrum of litter decomposability. Functional Ecology 26:5665.Google Scholar
GARCÍA, G. G., PALACIO, P. J. L. & ORTIZ, P. M. A. 2002. Reconocimiento geomorfológico e hidrográfico de la Reserva de la Biosfera Calakmul, México. Investigaciones Geograficas 48:723.Google Scholar
HANDA, I. T., AERTS, R., BERENDSE, F., BERG, M. P., BRUDER, A., BUTENSCHOEN, O., CHAUVET, E., GESSNER, M. O., JABIOL, J., MAKKONEN, M., MCKIE, B. G., MALMQVIST, B., PEETERS, E. T. H. M., SCHEU, S., SCHMID, B., VAN RUIJVEN, J., VOS, V. C. A. & HÄTTENSCHWILER, S. 2014. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–21.Google Scholar
HIKOSAKA, K. & OSONE, Y. 2009. A paradox of leaf-trait convergence: why is leaf nitrogen concentration higher in species with higher photosynthetic capacity? Journal of Plant Research 122:245251.Google Scholar
HÖLSCHER, D., KÖHLER, L., LEUSCHNER, C. & KAPPELLE, M. 2003. Nutrient fluxes in stemflow and throughfall in three successional stages of an upper montane rain forest in Costa Rica. Journal of Tropical Ecology 19:557565.Google Scholar
HUGHES, R. F., KAUFFMAN, J. B. & JARAMILLO, V. J. 1999. Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of México. Ecology 80:18921907.Google Scholar
JACKSON, B. G., PELTZER, D. A. & WARDLE, D. A. 2013. Are functional traits and litter decomposability coordinated across leaves, twigs and wood? A test using temperate rainforest tree species. Oikos 122:11311142.Google Scholar
KARBERG, N. J., SCOTT, N. A. & GIARDINA, C. P. 2008. Methods for estimating litter decomposition. Pp. 103111 in Hoover, C. M. (ed.). Field measurements for forest carbon monitoring. Springer, Berlin.Google Scholar
KAZAKOU, E., VILE, D., SHIPLEY, B., GALLET, C. & GARNIER, E. 2006. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Functional Ecology 20:2130.Google Scholar
KAZAKOU, E., VIOLLE, C., ROUMET, C., PINTOR, C., GIMENEZ, O. & GARNIER, E. 2009. Litter quality and decomposability of species from a Mediterranean succession depend on leaf traits but not on nitrogen supply. Annals of Botany 104:11511161.Google Scholar
KELLY, J. M. & BEAUCHAMP, J. J. 1987. Mass loss and nutrient changes in descomposing upland oak and mesic mixed-hardwood leaf litter. Soil Science Society of America Journal 51:16161622.Google Scholar
KOTOWSKA, M. M., LEUSCHNER, C., TRIADIATI, T. & HERTEL, D. 2016. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production. Oecologia 180:601618.Google Scholar
LI, Q., TIAN, Y., ZHANG, X., XU, X., WANG, H. & KUZYAKOV, Y. 2017. Labile carbon and nitrogen additions affect soil organic matter decomposition more strongly than temperature. Applied Soil Ecology 114:152160.Google Scholar
LOHBECK, M., POORTER, L., PAZ, H., PLA, L., VAN BREUGEL, M., MARTÍNEZ-RAMOS, M. & BONGERS, F. 2012. Functional diversity changes during tropical forest succession. Perspectives in Plant Ecology, Evolution and Systematics 14:8996.Google Scholar
LOHBECK, M., LEBRIJA-TREJOS, E., MARTÍNEZ-RAMOS, M., MEAVE, J. A., POORTER, L. & BONGERS, F. 2015. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession. PLoS ONE 10:115.Google Scholar
LORENZ, K. & LAL, R. 2010. Carbon sequestration in forest ecosystems. (First edition). Springer Dordrecht. 271 pp.Google Scholar
LU, S. W. & LIU, C. P. 2012. Patterns of litterfall and nutrient return at different altitudes in evergreen hardwood forests of Central Taiwan. Annals of Forest Science 69:877886.Google Scholar
MATSUKI, S. & KOIKE, T. 2006. Comparison of leaf life span, photosynthesis and defensive traits across seven species of deciduous broad-leaf tree seedlings. Annals of Botany 97:813817.Google Scholar
MELILLO, J. M., MCGUIRE, A. D., KICKLIGHTER, D. W., MOORE, B., VOROSMARTY, C. J. & SCHLOSS, A. L. 1993. Global climate change and terrestrial net primary production. Nature 363:234240.Google Scholar
MOURA, P. M., ALTHOFF, T. D., OLIVEIRA, R. A., SOUTO, J. S., SOUTO, P. C., MENEZES, R. S. C. & SAMPAIO, E. V. S. B. 2016. Carbon and nutrient fluxes through litterfall at four succession stages of Caatinga dry forest in Northeastern Brazil. Nutrient Cycling in Agroecosystems 105:2538.Google Scholar
OHTSUKA, T., SHIZU, Y., NISHIWAKI, A., YASHIRO, Y. & KOIZUMI, H. 2010. Carbon cycling and net ecosystem production at an early stage of secondary succession in an abandoned coppice forest. Journal of Plant Research 123:393401.Google Scholar
OLSON, J. S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322331.Google Scholar
ONO, K., HIRADATE, S., MORITA, S. & HIRAI, K. 2013. Fate of organic carbon during decomposition of different litter types in Japan. Biogeochemistry 112:721.Google Scholar
OSTERTAG, R., MARÍN, S. E., SILVER, W. L. & SCHULTEN, J. 2008. Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence in Puerto Rico. Ecosystems 11:701714.Google Scholar
PÉREZ-HARGUINDEGUY, N., DIAZ, S., CORNELISSEN, J. H. C., VENDRAMINI, F., CABIDO, M. & CASTELLANOS, A. 2000. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant and Soil 218:2130.Google Scholar
PÉREZ-HARGUINDEGUY, N., DIAZ, S., GARNIER, E., LAVOREL, S., POORTER, H., JAUREGUIBERRY, P., BRET-HARTE, M. S., CORNWELL, W. K., CRAINE, J. M., GURVICH, D. E., URCELAY, C., VENEKLAAS, E. J., REICH, P. B., POORTER, L., WRIGHT, I. J., RAY, P., ENRICO, L., PAUSAS, J. G., DE VOS, A. C., BUCHMANN, N., FUNES, G., QUÉTIER, F., HODGSON, J. G., THOMPSON, K., MORGAN, H. D., TER STEEGE, H., VAN DER HEIJDEN, M. G. A., SACK, L., BLONDER, B., POSCHLOD, P., VAIERETTI, M. V., CONTI, G., STAVER, A. C., AQUINO, S. & CORNELISSEN, J. H. C. 2013. New handbook for standardized measurement of plant functional traits worldwide. Australian Journal of Botany 61:167234.Google Scholar
PIETSCH, K. A., OGLE, K., CORNELISSEN, J. H. C., CORNWELL, W. K., BÖNISCH, G., CRAINE, J. M., JACKSON, B. G., KATTGE, J., PELTZER, D. A., PENUELAS, J., REICH, P. B., WARDLE, D. A., WEEDON, J. T., WRIGHT, I. J., ZANNE, A. E. & WIRTH, C. 2014. Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Global Ecology and Biogeography 23:10461057.Google Scholar
POORTER, L. & BONGERS, F. 2006. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:17331743.Google Scholar
POORTER, L., VAN DER PLASSCHE, M., WILLEMS, S. & BOOT, R. G. A. 2004. Leaf traits and herbivory rates of tropical tree species differing in successional status. Plant Biology 6:746754.Google Scholar
QUESTED, H., ERIKSSON, O., FORTUNEL, C. & GARNIER, E. 2007. Plant traits relate to whole-community litter quality and decomposition following land use change. Functional Ecology 21:10161026.Google Scholar
READ, L. & LAWRENCE, D. 2003. Litter nutrient dynamics during succession in dry tropical forests of the Yucatan: regional and seasonal effects. Ecosystems 6:747761.Google Scholar
RENTERÍA, L. Y. & JARAMILLO, V. J. 2011. Rainfall drives leaf traits and leaf nutrient resorption in a tropical dry forest in Mexico. Oecologia 165:201211.Google Scholar
RYAN, M. G., BINKLEY, D. & FOWNES, J. H. 1997. Age-related decline in forest productivity: pattern and process. Advances in Ecology Research 27:213262.Google Scholar
RZEDOWSKI, J. 1978. Vegetación de México. Edit. Limusa, México. 432 pp.Google Scholar
SALDARRIAGA, J. G., WEST, D. C. & THARP, M. L. 1988. Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. Journal of Ecology 76:938958.Google Scholar
SAYER, E. J. & TANNER, E.V. J. 2010. Experimental investigation of the importance of litterfall in lowland semi-evergreen tropical forest nutrient cycling. Journal of Ecology 98:10521062.Google Scholar
SENEVIRATNE, G. 2000. Litter quality and nitrogen release in tropical agriculture: a synthesis. Biology and Fertility of Soils 31:6064.Google Scholar
SZEFER, P., CARMONA, C. P., CHMEL, K., KONEČNÁ, M., LIBRA, M., MOLEM, K., NOVOTNÝ, V., SEGAR, S. T., ŠVAMBERKOVÁ, E., TOPLICEANU, T. S. & LEPŠ, J. 2017. Determinants of litter decomposition rates in a tropical forest: functional traits, phylogeny and ecological succession. Oikos 126:11011111.Google Scholar
TAYLOR, B. R., PARKINSON, D., PARSONS, W. F. J. & FEB, N. 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97104.Google Scholar
TURNER, B. L. 2001. Sustainability and forest transitions in the southern Yucatán: the land architecture approach. Land Use Policy 27:170179.Google Scholar
VESTER, H. F., LAWRENCE, D., EASTMAN, J. R., TURNER, B. L., CALMÉ, S., DICKSON, R., POZO, C. & SANGERMANO, F. 2007. Land change in the southern Yucatan and Calakmul Biosphere Reserve: effects on habitat and biodiversity. Ecological Applications 17:9891003.Google Scholar
WIEDER, R. K. & LANG, G. E. 1982. A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:16361642.Google Scholar
WRIGHT, I. J. & WESTOBY, M. 2000. Cross-species relationships between seedling relative growth rate, nitrogen productivity and root vs leaf function in 28 Australian woody species. Functional Ecology 14:97107.Google Scholar
WRIGHT, I. J., REICH, P. B., WESTOBY, M., ACKERLY, D. D., ZDRAVKO, B., BONGERS, F., CAVENDER, B. J., CHAPIN, T., CORNELISSEN, J. H. C., DIEMER, M., FLEXAS, J., GARNIER, E., GROOM, P. K., GULIAS, J., HIKOSAKA, K., LAMONT, B. B., LEE, T., LEE, W., LUSK, C., MIDGLEY, J. J., NAVAS, M. L., NIINEMETS, U., OLEKSYN, J., POORTER, H., POOT, P., PRIOR, L., PYANKOV, V. I., ROUMET, C., THOMAS, S. C., TJOELKER, M. G., VENEKLAAS, E. J. & VILLAR, R. 2004. The worldwide leaf economics spectrum. Nature 428:821827.Google Scholar
XU, W. & YUAN, W. 2017. Responses of microbial biomass carbon and nitrogen to experimental warming: a meta-analysis. Soil Biology and Biochemistry 115:265274.Google Scholar
XULUC, T. F. J., VESTER, H. F. M., RAMÍREZ, M. N., CASTELLANOS, A. J. & LAWRENCE, D. 2003. Leaf litter decomposition of tree species in three successional phases of tropical dry secondary forest in Campeche, Mexico. Forest Ecology and Management 174: 401412.Google Scholar
ZANNE, A. E., OBERLE, B., DUNHAM, K. M., MILO, A. M., WALTON, M. L. & YOUNG, D. F. 2015. A deteriorating state of affairs: how endogenous and exogenous factors determine plant decay rates. Journal of Ecology 103:14211431.Google Scholar
ZHANG, H., YUAN, W., DONG, W. & LIU, S. 2014. Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complexity 20:240247.Google Scholar