Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T05:26:07.429Z Has data issue: false hasContentIssue false

Tropical montane cloud forest: environmental drivers of vegetation structure and ecosystem function

Published online by Cambridge University Press:  09 November 2015

Timothy J. Fahey*
Affiliation:
Department of Natural Resources, Fernow Hall, Cornell University, Ithaca, NY 14853, USA
Ruth E. Sherman
Affiliation:
Department of Natural Resources, Fernow Hall, Cornell University, Ithaca, NY 14853, USA
Edmund V.J. Tanner
Affiliation:
Department of Plant Sciences, Downing St., University of Cambridge, Cambridge CB2 3EA, UK
*
1Corresponding author. Email: tjf5@cornell.edu

Abstract:

Tropical montane cloud forests (TMCF) are characterized by short trees, often twisted with multiple stems, with many stems per ground area, a large stem diameter to height ratio, and small, often thick leaves. These forests exhibit high root to shoot ratio, with a moderate leaf area index, low above-ground production, low leaf nutrient concentrations and often with luxuriant epiphytic growth. These traits of TMCF are caused by climatic conditions not geological substrate, and are particularly associated with frequent or persistent fog and low cloud. There are several reasons why fog might result in these features. Firstly, the fog and clouds reduce the amount of light received per unit area of ground and as closed-canopy forests absorb most of the light that reaches them the reduction in the total amount of light reduces growth. Secondly, the rate of photosynthesis per leaf area declines in comparison with that in the lowlands, which leads to less carbon fixation. Nitrogen supply limits growth in several of the few TMCFs where it has been investigated experimentally. High root : shoot biomass and production ratios are common in TMCF, and soils are often wet which may contribute to N limitation. Further study is needed to clarify the causes of several key features of TMCF ecosystems including high tree diameter : height ratio.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AIBA, S. & KITAYAMA, K. 1999. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecology 140:139157.CrossRefGoogle Scholar
ASNER, G. P., ANDERSON, C. B., MARTIN, R. E., KNAPP, D. E., TUPAYACHI, R., SINCA, F. & MALHI, Y. 2014. Landscape-scale changes in forest structure and functional traits along an Andes-to-Amazon elevation gradient. Biogeosciences 11:843856.CrossRefGoogle Scholar
AYLETT, G. P. 1985. Irradiance interception, leaf conductance and photosynthesis in Jamaican upper montane rain forest trees. Photosynthetica 19:323337.Google Scholar
BAYNTON, H. W. 1968. The ecology of an elfin forest in Puerto Rico 2. The microclimate of Pico del Oeste. Journal of the Arnold Arboretum 49:419430.CrossRefGoogle Scholar
BELLINGHAM, P. J. & SPARROW, A. D. 2009. Multi-stemmed trees in montane rain forests: their frequency and demography in relation to elevation, soil nutrients and disturbance. Journal of Ecology 97:472483.CrossRefGoogle Scholar
BENNER, J. W. & VITOUSEK, P. M. 2007. Development of a diverse epiphyte community in response to phosphorus fertilization. Ecology Letters 10:628636.CrossRefGoogle ScholarPubMed
BENNER, J. W., CONROY, S., LUNCH, C. K., TOYODA, N. & VITOUSEK, P. M. 2007. Phosphorus fertilization increases the abundance and nitrogenase activity of the cyanolichen Pseudocyphellaria crocata in Hawaiian montane forests. Biotropica 39:400405.CrossRefGoogle Scholar
BENNER, J., VITOUSEK, P. M. & OSTERTAG, R. 2010. Nutrient cycling and nutrient limitation in tropical montane cloud forests. Pp. 90100 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, New York.Google Scholar
BOHLMAN, S. A., MATELSON, T. J. & NADKARNI, N M. 1995. Moisture and temperature patterns of canopy humus and forest floor soil of a montane cloud forest, Costa Rica. Biotropicà18;27:1319.CrossRefGoogle Scholar
BROOKSHIRE, E. N. J., HEDIN, L. O., NEWBOLD, J. D., SIGMAN, D. M. & JACKSON, J. K. 2012. Sustained losses of bioavailable nitrogen from montane tropical forests. Nature Geoscience 5:123126.CrossRefGoogle Scholar
BROWN, W. H. 1919. Vegetation of Philippine mountains, the relation between environment and physical types at different altitudes. Bureau of Printing, Manila. 434 pp.Google Scholar
BRUIJNZEEL, L. A. & HAMILTON, L. S. 2000. Decision time for cloud forests. International Hydrological Programme. IHP Humid Tropics Programme series, no. 13. UNESCO, Paris.Google Scholar
BRUIJNZEEL, L. A. & VENEKLAAS, E. 1998. Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79:39.CrossRefGoogle Scholar
BRUIJNZEEL, L. A., SCATENA, F. N. & HAMILTON, L. S. 2010. Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge. 740 pp.Google Scholar
BRUNDRETT, M. C. 2009. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil 320:3777.CrossRefGoogle Scholar
CLEVELAND, C. C., TOWNSEND, A. R., TAYLOR, P., ALVAREZ-CLARE, S., BUSTAMANTE, M., CHUYONG, G., DOBROWSKI, S. Z., GRIERSON, P., HARMS, K. E., HOULTON, B. Z., MARKLEIN, A., PARTON, W., PORDER, S., REED, S. C., SIERRA, C. A., SILVER, W. L., TANNER, E. V. J. & WIEDER, W. R. 2011. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecology Letters 14:939947.CrossRefGoogle ScholarPubMed
CORDERO, R. A. 1999. Ecophysiology of Cecropia schreberiana saplings in two wind regimes in an elfin cloud forest: growth, gas exchange, architecture and stem biomechanics. Tree Physiology 19:153163.CrossRefGoogle Scholar
COUTTS, M. P. 1983. Root architecture and tree stability. Plant and Soil 71:171188.CrossRefGoogle Scholar
CULMSEE, H., LEUSCHNER, C., MOSER, G. & PITOPANG, R. 2010. Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. Journal of Biogeography 37:960974.CrossRefGoogle Scholar
FELDPAUSCH, T. R., BANIN, L., PHILLIPS, O. L., BAKER, T. R., LEWIS, S. L., QUESADA, C. A., AFFUM-BAFFOE, K., ARETS, E. J. M. M., BERRY, N. J., BIRD, M., BRONDIZIO, E. S., DE CAMARGO, P., CHAVE, J., DJAGBLETEY, G., DOMINGUES, T. F., DRESCHER, M., FEARNSIDE, P. M., FRANÇA, M. B., FYLLAS, N. M., LOPEZ-GONZALEZ, G., HLADIK, A., HIGUCHI, N., HUNTER, M. O., IIDA, Y., SALIM, K. A., KASSIM, A. R., KELLER, M., KEMP, J., KING, D. A., LOVETT, J. C., MARIMON, B. S., MARIMON-JUNIOR, B. H., LENZA, E., MARSHALL, A. R., METCALFE, D. J., MITCHARD, E. T. A., MORAN, E. F., NELSON, B. W., NILUS, R., NOGUEIRA, E. M., PALACE, M., PATIÑO, S., PEH, K. S.-H., RAVENTOS, M. T., REITSMA, J. M., SAIZ, G., SCHRODT, F., SONKÉ, B., TAEDOUMG, H. E., TAN, S., WHITE, L., WÖLL, H. & LLOYD, J. 2011. Height-diameter allometry of tropical forest trees. Biogeosciences 8:10811106.CrossRefGoogle Scholar
FISHER, J. B., MALHI, Y., TORRES, I. C., METCALFE, D. B., VAN DE WEG, M. J., MEIR, P., SILVA-ESPEJO, J. E. & HUASCO, W. H. 2013. Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172:889902.CrossRefGoogle Scholar
FORMAN, R. T. T. 1975. Canopy lichens with blue-green algae: a nitrogen source in a Colombian rainforest. Ecology 56:11761184.CrossRefGoogle Scholar
GENTRY, A. H., CHURCHILL, S. P., BALSLEV, H., FORERO, E., & LUTEYN, J. L. 1995. Patterns of diversity and floristic composition in Neotropical montane forests. Pp. 103–126 in Churchill, S. P., Balslev, H., Forero, E. & Luteyn, J. L. (eds.). Biodiversity and conservation of Neotropical montane forests. Proceedings of the Neotropical Montane Forest Biodiversity and Conservation symposium, The New York Botanical Garden, 21–26 June 1993. New York Botanical Garden, New York.Google Scholar
GIAMBELLUCA, T. W., DELAY, J. K., NULLET, M. A., SCHOLL, M. A. & GINGERICH, S. B. 2010. Interpreting canopy water balance and fog screen observations: separating cloud water from wind-blown rainfall at two contrasting forest sites in Hawai‘i. Pp. 342351 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, New York.Google Scholar
GILL, A. M. 1969. The ecology of an elfin forest in Puerto Rico, 6. Aerial roots. Journal of the Arnold Arboretum 50:197209.CrossRefGoogle Scholar
GIRARDIN, C. A., MALHI, Y., ARAGÃO, L. E. O. C., MAMANI, M., HUASCO, W. H., DURAND, L., FEELEY, K. J., RAPP, J., SILVA-ESPEJO, J. E., SILMAN, M. R., SALINAS, N. & WHITTAKER, R. J. 2010. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology 16:31763192.CrossRefGoogle Scholar
GIRARDIN, C. A. J., ARAGÃO, L. E. O. C., MALHI, Y., HUARACA HUASCO, W., METCALFE, D. B., DURAND, L., MAMANI, M., SILVA-ESPEJO, J. E. & WHITTAKER, R. J. 2013. Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests. Global Biogeochemical Cycles 27:252264.CrossRefGoogle Scholar
GIRARDIN, C. A. J., FARFAN-RIOS, W., GARCIA, K., FEELEY, K. J., JØRGENSEN, P.M., MURAKAMI, A. A., PÉREZ, L. C., SEIDEL, R., PANIAGUA, N., FUENTES CLAROS, A. F., MALDONADO, C., SILMAN, M., SALINAS, N., REYNEL, C., NEILL, D. A., SERRANO, M., CABALLERO, C. J., LA TORRE-CUADROS, M., MACIA, M. J., KILLEEN, T. J. & MALHI, Y. 2014a. Spatial patterns of above-ground structure, biomass and composition in a network of six Andean elevation transects. Plant Ecology and Diversity 7:161171.CrossRefGoogle Scholar
GIRARDIN, C. A. J., SILVA ESPEJOB, J. E., DOUGHTY, C. E., HUASCO, W. H., METCALFE, D.B., DURAND-BACA, L., MARTHEWS, T. R., ARAGAO, L. E. O. C., FARF~N-RIOS, W., GARCIA-CABRERA, K., HALLADAY, K., FISHER, J. B., GALIANO-CABRERA, D. F., HUARACA-QUISPE, L. P., ALZAMORA-TAYPE, I., EGUILUZ-MORA, L., SALINAS-REVILLA, N., SILMAN, M. R., MEIR, P. & MALHI, Y. 2014b. Productivity and carbon allocation in a tropical montane cloud forest in the Peruvian Andes. Plant Ecology and Diversity 7:107123.CrossRefGoogle Scholar
GIVNISH, T. J. 1984. Leaf and canopy adaptations in tropical forests. Pp. 5184 in Medina, E., Mooney, H. A. & Vazquez-Yanes, C. (eds.). Physiological ecology of plants of the wet tropics. Dr W. Junk Publisher, The Hague.CrossRefGoogle Scholar
GOLLEY, F., McGINNIS, J. & CLEMENTS, R. 1971. La biomasa y la estructura de algunos bosque de Darien, Panama. Turrialba 21:189196.Google Scholar
GRADSTEIN, S. R., OBREGON, A., GEHRIG, C. & BENDIX, J. 2010. Tropical lowland cloud forest: a neglected forest type. Pp. 130133 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, New York.Google Scholar
DE GOUVENAIN, R. C. & SILANDER, J. A. 2003. Do tropical storm regimes influence the structure of tropical lowland rain forests? Biotropica 35:166180.Google Scholar
GRIEVE, T. G. A., PROCTOR, J. & COUSINS, S. A. 1990. Soil variation with altitude on Volcán Barva, Costa Rica. Catena 17:525534.CrossRefGoogle Scholar
GRUBB, P. J. 1971. Interpretation of the ‘Massenerhebung effect’ on tropical mountains. Nature 229:4445.CrossRefGoogle ScholarPubMed
GRUBB, P. J. 1977. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8:83107.CrossRefGoogle Scholar
HAFKENSCHEID, R. L. L. J. 2000. Hydrology and biogeochemistry of tropical montane rain forests of contrasting stature in the Blue Mountains, Jamaica. Doctoral dissertation, Vrije Universiteit Amsterdam. 302 pp.Google Scholar
HÄGER, A. & DOHRENBUSCH, A. 2011. Hydrometeorology and structure of tropical montane cloud forests under contrasting biophysical conditions in north-western Costa Rica. Hydrological Processes 25:392401.CrossRefGoogle Scholar
HIETZ, P. 2010. Ecology and ecophysiology of epiphytes in tropical montane cloud forests. Pp. 6776 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, New York.Google Scholar
HIETZ, P., WANEK, W., WANIA, R. & NADKARNI, N. M. 2002. Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition. Oecologia 131:350355.CrossRefGoogle Scholar
HOLDRIDGE, L. R. 1967. Life zone ecology. Tropical Science Center, San Jose. 206 pp.Google Scholar
HOLWERDA, F., BRUIJNZEEL, L. A., OORD, A. L. & SCATENA, F. N. 2010. Fog interception in a Puerto Rico elfin cloud forest: a wet-canopy water budget approach. Pp. 282292 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, New York.Google Scholar
HOMEIER, J., HERTEL, D., CAMENZIND, T., CUMBICUS, N. L., MARAUN, M., MARTINSON, G. O., POMA, L. N., RILIG, M. C., SANDMANN, D., SCHEU, S., VELDKAMP, E., WILCKE, W., WULLAERT, H. & LEUSCHNER, C. 2012. Tropical Andean forests are highly susceptible to nutrient inputs – rapid effects of experimental N and P addition to an Ecuadorian montane forest. PloS ONE 7:e347128.CrossRefGoogle Scholar
HORWATH, A. B. 2011. Epiphytic bryophytes as cloud forest indicators: stable isotopes, biomass and diversity along an altitudinal gradient in Peru. PhD Thesis, University of Cambridge.Google Scholar
HOULTON, B. Z., WANG, Y. P., VITOUSEK, P. M. & FIELD, C. B. 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327330.CrossRefGoogle ScholarPubMed
HOWARD, R. A. 1968. Ecology of an elfin forest in Puerto Rico. 1. Introduction and composition studies. Journal of the Arnold Arboretum 49:381418.CrossRefGoogle Scholar
JARVIS, A. & MULLIGAN, M. 2010. The climate of cloud forests. Pp. 3956 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, New York.Google Scholar
KESSLER, M., PARRIS, B. S. & KESSLER, E. 2001. A comparison of the tropical montane pteridophyte floras of Mount Kinabalu, Borneo, and Parque Nacional Carrasco, Bolivia. Journal of Biogeography 28:611622.CrossRefGoogle Scholar
KING, D. A. 1996. Allometry and life history of tropical trees. Journal of Tropical Ecology 12:2544.CrossRefGoogle Scholar
KING, D. A., DAVIES, S. J., TAN, S. & NOOR, N. S. M. 2009. Trees approach gravitational limits to height in tall lowland forests of Malaysia. Functional Ecology 23:284291.CrossRefGoogle Scholar
KITAYAMA, K. 1992. An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102:149171.CrossRefGoogle Scholar
KITAYAMA, K. & AIBA, S.-I. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90:3751.CrossRefGoogle Scholar
KÖHLER, L., TOBÓN, C., FRUMAU, K. F. A. & BRUIJNZEEL, L. A. 2007. Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica. Plant Ecology 193:171184.CrossRefGoogle Scholar
KRÖMER, T., KESSLER, M., GRADSTEIN, S. R. & ACEBEY, A. 2005. Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. Journal of Biogeography 32:17991809.CrossRefGoogle Scholar
LARSEN, M. C., & TORRES-SÁNCHEZ, A. J. 1998. The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico. Geomorphology 24:309331.CrossRefGoogle Scholar
LAWTON, R. O. 1982. Wind stress and elfin stature in a montane rain forest tree: an adaptive explanation. American Journal of Botany 69:12241230.CrossRefGoogle Scholar
LAWTON, R. O., NAIR, U. S., RAY, D., REGMI, A., POUNDS, J. A. & WELCH, R. M. 2010. Quantitative measures of immersion in cloud and the biogeography of cloud forests. Pp. 217227 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, New York.Google Scholar
LETTS, M. G. & MULLIGAN, M. 2005. The impact of light quality and leaf wetness on photosynthesis in north-west Andean tropical montane cloud forest. Journal of Tropical Ecology 21:549557.CrossRefGoogle Scholar
LEUSCHNER, C., MOSER, G., BERTSCH, C., RODERSTEIN, M. & HERTEL, D. 2007. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology 8:219230.CrossRefGoogle Scholar
LIEBERMAN, D., LIEBERMAN, M., PERALTA, R. & HARTSHORN, G. S. 1996. Tropical forest structure and compostion on a large-scale gradient in Costa Rica. Journal of Ecology 84: 137152.CrossRefGoogle Scholar
MARSCHNER, H. & DELL, B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159: 89102.CrossRefGoogle Scholar
MARTIN, P. H. & FAHEY, T. J. 2014. Mesoclimate patterns shape the striking vegetation mosaic in the Cordillera Central, Dominican Republic. Arctic, Antarctic and Alpine Research 46:755765.CrossRefGoogle Scholar
MARTIN, P. H., SHERMAN, R. E. & FAHEY, T. J. 2007. Tropical montane forest ecotones: climate gradients, natural disturbance, and vegetation zonation in the Cordillera Central, Dominican Republic. Journal of Biogeography 34:17921806.CrossRefGoogle Scholar
MATSON, A. L., CORRE, M. D., BURNEO, J. I. & VELDKAMP, E. 2015. Free-living nitrogen fixation responds to elevated nutrient inputs in tropical montane forest floor and canopy soils of southern Ecuador. Biogeochemistry 122:281294.CrossRefGoogle Scholar
McDOWELL, W. H. & ASBURY, C. E. 1994. Export of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnology and Oceanography 39:111125.CrossRefGoogle Scholar
McJANNET, D. L., WALLACE, J. S. & REDDELL, P. 2010. Comparative water budgets of a lower and an upper montane cloud forest in the Wet Tropics of northern Australia. Pp. 479490 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, New York.Google Scholar
McMAHON, P. 1973. Size and shape in biology: elastic criteria impose limits on biological proportions, and consequently on metabolic rates. Science 179:12011204.CrossRefGoogle Scholar
MILDENBERGER, K., BEIDERWIEDEN, E., HSIA, Y.-J. & KLEMM, O. 2009. CO2 and water vapor fluxes above a subtropical mountain cloud forest – the effect of light conditions and fog. Agricultural and Forest Meteorology 149:17301736.CrossRefGoogle Scholar
MOSER, G., HERTEL, D. & LEUSCHNER, C. 2007. Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10:924935.CrossRefGoogle Scholar
MOSER, G., LEUSCHNER, C., HERTEL, D., GRAEFE, S., SOETHE, N. & IOST, S. 2011. Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Global Change Biology 17:22112226.CrossRefGoogle Scholar
MULLIGAN, M. 2010. Modeling the tropics-wide extent and distribution of cloud forest and cloud forest loss, with implications for conservation priority. Pp. 1438 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, New York.Google Scholar
NADKARNI, N. M. 1981. Canopy roots: convergent evolution in rainforest nutrient cycles. Science 214:10232024.CrossRefGoogle ScholarPubMed
NADKARNI, N. M. 1984. Epiphytic biomass and nutrient capital of a neotropical elfin forest. Biotropica 16:249256.CrossRefGoogle Scholar
NADKARNI, N. M., SCHAEFER, D. A., MATELSON, T. J. & SOLANO, R. 2004. Biomass and nutrient pools of canopy and terrestrial components in primary and secondary montane cloud forest, Costa Rica. Forest Ecology and Management 198:223236.CrossRefGoogle Scholar
NIKLAS, K. J. 1994. Interspecific allometries of critical buckling height and actual plant height. American Journal of Botany 81:12751279.CrossRefGoogle Scholar
NIKLAS, K. J. & SPATZ, H. C. 2004. Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proceedings of the National Academy of Sciences USA 101:1566115663.CrossRefGoogle ScholarPubMed
ODUM, H. T. 1970. Rain forest structure and mineral-cycling homeostasis. Pp. H3H52 in Odum, H. T. & Pigeon, R. F. (eds.). A tropical rainforest. Division of Technical Information, U.S. Atomic Energy Commission, Oakridge.Google Scholar
PERAKIS, S. S. & HEDIN, L. O. 2002. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415:416419.CrossRefGoogle ScholarPubMed
PROCTOR, J., LEE, Y. F., LANGLEY, A. M., MUNRO, W. R. & NELSON, T. 1988. Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. I. Environment, forest structure and floristics. Journal of Ecology 76:320340.CrossRefGoogle Scholar
RAICH, J. W., RUSSELL, A. E. & VITOUSEK, P. M. 1997. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai’i. Ecology 78:707721.Google Scholar
RAINS, K. C., NADKARNI, N. M. & BLEDSOE, C. S. 2003. Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest. Mycorrhiza 13:257264.CrossRefGoogle Scholar
RAPP, J. M., SILMAN, M. R., CLARK, J. S., GIRARDIN, D. G., GALIANO, D. & TITO, R. 2012. Intra- and interspecific tree growth across a long altitudinal gradient in the Peruvian Andes. Ecology 93:20612072.CrossRefGoogle ScholarPubMed
ROMAN, L., SCATENA, F. N. & BRUIJNZEEL, L. A. 2010. Global and local variations in tropical montane cloud forest soils. Pp. 7789 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge.Google Scholar
SALAZAR, L., HOMEIER, J., KESSLER, M., ABRAHAMCZYK, S., LEHNERT, M., KRÖMER, T. & KLUGE, J. 2013. Diversity patterns of ferns along elevational gradients in Andean tropical forests. Plant Ecology and Diversity 8:1324.CrossRefGoogle Scholar
SALINAS, N., MALHI, Y., MEIR, P., SILMAN, M., ROMAN CUESTA, R., HUAMAN, J., SALINAS, D., HUAMAN, V., GIBAJA, A., MAMANI, M. & FARFAN, F. 2011. The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytologist 189:967977.CrossRefGoogle ScholarPubMed
SANTIAGO, L. S., GOLDSTEIN, G., MEINZER, F. C., FOWNES, J. & MUELLER-DOMBOIS, D. 2000. Transpiration and forest structure in relation to soil waterlogging in a Hawaiian montane cloud forest. Tree Physiology 20:673681.CrossRefGoogle Scholar
SANTIAGO, L. S., JONES, T. J. & GOLDSTEIN, G. 2010. Physiological variation in Hawaiian Metrosideros polymorpha across a range of habitats: from dry forests to cloud forests. Pp. 456464 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge.Google Scholar
SCHAWE, M., GEROLD, G., BACH, K. & GRADSTEIN, S. R. 2010. Hydrometeorological patterns in relation to montane forest types along an elevational gradient in the Yungas of Bolivia. Pp. 199207 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge.Google Scholar
SCHUUR, E. A. G. 2001. The effect of water on decomposition dynamics in mesic to wet Hawaiian montane forests. Ecosystems 4:259273.CrossRefGoogle Scholar
SCHUUR, E. A. G., CHADWICK, O. A. & MATSON, P. A. 2001. Carbon cycling and soil carbon storage in mesic to wet Hawaiian montane forests. Ecology 82:31823196.CrossRefGoogle Scholar
SCHWARZKOPF, T., RIHA, S. J., FAHEY, T. J. & DEGLORIA, S. 2011. Are cloud forest tree structure and environment related in the Venezuelan Andes? Austral Ecology 36:280289.CrossRefGoogle Scholar
SHERMAN, R. E., MARTIN, P. M. & FAHEY, T. J. 2005. Vegetation-environment relationships in forest ecosystems of the Cordillera Central, Dominican Republic. Journal of the Torrey Botanical Society 132:293310.CrossRefGoogle Scholar
SHREVE, F. 1911. Studies on Jamaican Hymenophyllaceae. Botanical Gazette 51:184209.CrossRefGoogle Scholar
SHREVE, F. 1914. A montane rain-forest: a contribution to the physiological plant geography of Jamaica. Carnegie Institution of Washington, Washington, DC. 176 pp.CrossRefGoogle Scholar
SILVER, W., LUGO, A. E. & KELLER, M. 1999. Soil oxygen availability and biogeochemistry along rainfall and topographical gradients in upland wet tropical forest soils. Biogeochemistry 44:301328.CrossRefGoogle Scholar
SILVER, W. L., THOMPSON, A. W., HERMAN, D. J. & FIRESTONE, M. K. 2010. Is there evidence for limitations to nitrogen mineralization in upper montane tropical forests? Pp. 418427 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, New York.Google Scholar
SOETHE, N., LEHMANN, J. & ENGELS, C. 2006. Root morphology and anchorage of six native tree species from a tropical montane forest and an elfin forest in Ecuador. Plant and Soil 279:173185.CrossRefGoogle Scholar
SOETHE, N., LEHMANN, J., & ENGELS, C. 2008. Nutrient availability at different altitudes in a tropical montane forest in Ecuador. Journal of Tropical Ecology 24:397406.CrossRefGoogle Scholar
SPERRY, J. S., MEINZER, F. C. & McCULLOH, K. A. 2008. Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant, Cell and Environment 31:632645.CrossRefGoogle ScholarPubMed
SUGDEN, A. M. 1985. Leaf anatomy in a Venezuelan montane forest. Botanical Journal of the Linnean Society 90:231241.CrossRefGoogle Scholar
TANNER, E. V. J. 1977. Four montane rain forests of Jamaica: a quantitative characterization of the floristics, the soils and the foliar mineral levels, and a discussion of the interrelations. Journal of Ecology 65:883918.CrossRefGoogle Scholar
TANNER, E. V. J. & KAPOS, V. 1982. Leaf structure of Jamaican upper montane rain-forest trees. Biotropica 14:1624.CrossRefGoogle Scholar
TANNER, E. V. J., VITOUSEK, P. M. & CUEVAS, E. 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:1022.CrossRefGoogle Scholar
TOBÓN, C., BRUIJNZEEL, L. A., FRUMAU, K. F. A. & CALVO-ALVARADO, J. C. 2010. Changes in soil physical properties after conversion of tropical montane cloud forest to pasture in northern Costa Rica. Pp. 502515 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, New York.Google Scholar
TRANQUILLINI, W. 1979. Physiological ecology of the alpine timberline. Ecological Studies Vol. 31. Springer Verlag, Berlin. 137 pp.CrossRefGoogle Scholar
UNGER, M., HOMEIER, J. & LEUSCHNER, C. 2012. Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia 170:263274.CrossRefGoogle ScholarPubMed
VAN DE WEG, M. J., MEIR, P., GRACE, J. & ATKIN, O. K. 2009. Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecology and Diversity 2:243254.CrossRefGoogle Scholar
VAN DE WEG, M. J., MEIR, P., GRACE, J. & RAMOS, G. D. 2012. Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest. Oecologia 168:2334.CrossRefGoogle ScholarPubMed
WARDLE, D. A., BELLINGHAM, P. J., KARDOL, P., GIESLER, R. & TANNER, E. V. J. 2015. Coordination of aboveground and belowground responses to local-scale soil fertility differences between two contrasting Jamaican rain forest types. Oikos 124:285297.CrossRefGoogle Scholar
WEAVER, P. L., BYER, M. D. & BRUCK, D. L. 1973. Transpiration rates in the Luquillo Mountains of Puerto Rico. Biotropica 5:123133.CrossRefGoogle Scholar
WEAVER, P.L., MEDINA, E., POOL, D., DUGGER, K., GONZALEZ-LIBOY, J. & CUEVAS, E. 1986. Ecological observations in the dwarf forest of the Luquillo Mountains of Puerto Rico. Biotropica 18:7985.CrossRefGoogle Scholar
WERNER, F. A. & HOMEIER, J. 2015. Is tropical montane forest heterogeneity promoted by a resource-driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient. Functional Ecology 29:430440.CrossRefGoogle Scholar
WILCKE, W., BOY, J., GOLLER, R., FLEISCHBEIN, K., VALAREZO, C. & ZECH, W. 2010. Effect of topography on soil fertility and water flow in an Ecuadorian lower montane forest. Pp. 402409 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, New York.Google Scholar
WITTICH, B., HORNA, V., HOMEIER, J. & LEUSCHNER, C. 2012. Altitudinal change in the photosynthetic capacity of tropical trees: a case study from Ecuador and a pantropical literature analysis. Ecosystems 15:958973.CrossRefGoogle Scholar
WOODWARD, F. I. 1993. The lowland-to-upland transition – modelling plant responses to environmental change. Ecological Applications 3:404408.CrossRefGoogle ScholarPubMed
ZIMMERMAN, J. K., PULLIAM, W. M., LODGE, D. J., QUIÑONES-ORFILA, V., FETCHER, N., GUZMÁN-GRAJALES, S., PARROTTA, J. A., ASBURY, C. E., WALKER, L. R. & WAIDE, R. B. 1995. Nitrogen immobilization by decomposing woody debris and the recovery of tropical wet forest from hurricane damage. Oikos 72:314322.CrossRefGoogle Scholar