Published online by Cambridge University Press: 29 August 2012
Plants have an inherent flexibility to respond to different environmental conditions. One axis of plant ecophysiological strategy is seen in the spectrum of leaf functional traits. Flexibility in these traits would be suggestive of plants’ phenotypic plasticity in response to environmental changes. This research seeks to identify differences between leaves of sprout and non-sprout shoots of a broad ecological range of neotropical tree species. Using a functional-trait approach, this study assesses a large pool of species for within-species physiological flexibility. Leaf mass per area (LMA) and leaf area were measured for plants of sprout and non-sprout origin for 26 tree species grown in a reforestation plantation in Panama. Sprouts had a consistently lower LMA than non-sprouts, but there was no consistent pattern for leaf area. These trends show that sprouts are more like pioneer species than conspecific saplings, a finding in general agreement with fast sprout growth seen in previous studies. Further, later-successional (high LMA) species showed a greater reduction of LMA in sprouts. These results show that tropical tree species adjust physiologically to changing ecological roles and suggest that certain species may be more resilient than realized to changing climate and disturbance patterns.