Published online by Cambridge University Press: 22 March 2021
Classification of wines with a large number of correlated covariates may lead to classification results that are difficult to interpret. In this study, we use a publicly available dataset on wines from three known cultivars, where there are 13 highly correlated variables measuring chemical compounds of wines. The goal is to produce an efficient classifier with straightforward interpretation to shed light on the important features of wines in the classification. To achieve the goal, we incorporate principal component analysis (PCA) in the k-nearest neighbor (kNN) classification to deal with the serious multicollinearity among the explanatory variables. PCA can identify the underlying dominant features and provide a more succinct and straightforward summary over the correlated covariates. The study shows that kNN combined with PCA yields a much simpler and interpretable classifier that has comparable performance with kNN based on all the 13 variables. The appropriate number of principal components is chosen to strike a balance between predictive accuracy and simplicity of interpretation. Our final classifier is based on only two principal components, which can be interpreted as the strength of taste and level of alcohol and fermentation in wines, respectively. (JEL Classifications: C10, Cl4, D83)
The authors gratefully acknowledge helpful comments and advice from the editor, Karl Storchmann, and an anonymous reviewer.