Article contents
A reinforcement learning approach to coordinate exploration with limited communication in continuous action games
Published online by Cambridge University Press: 11 February 2016
Abstract
Learning automata are reinforcement learners belonging to the class of policy iterators. They have already been shown to exhibit nice convergence properties in a wide range of discrete action game settings. Recently, a new formulation for a continuous action reinforcement learning automata (CARLA) was proposed. In this paper, we study the behavior of these CARLA in continuous action games and propose a novel method for coordinated exploration of the joint-action space. Our method allows a team of independent learners, using CARLA, to find the optimal joint action in common interest settings. We first show that independent agents using CARLA will converge to a local optimum of the continuous action game. We then introduce a method for coordinated exploration which allows the team of agents to find the global optimum of the game. We validate our approach in a number of experiments.
- Type
- Articles
- Information
- The Knowledge Engineering Review , Volume 31 , Issue 1: Adaptive Learning Agents , January 2016 , pp. 77 - 95
- Copyright
- © Cambridge University Press, 2016
References
- 1
- Cited by