Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T23:25:56.698Z Has data issue: false hasContentIssue false

Chunking up speech in real time: linguistic predictors and cognitive constraints

Published online by Cambridge University Press:  30 March 2023

Svetlana Vetchinnikova*
Affiliation:
Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland
Alena Konina
Affiliation:
Department of Languages, University of Helsinki, Helsinki, Finland
Nitin Williams
Affiliation:
Department of Languages, University of Helsinki, Helsinki, Finland Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
Nina Mikušová
Affiliation:
Department of Languages, University of Helsinki, Helsinki, Finland
Anna Mauranen
Affiliation:
Department of Languages, University of Helsinki, Helsinki, Finland
*
*Corresponding author. Email: svetlana.vetchinnikova@helsinki.fi

Abstract

There have been some suggestions in linguistics and cognitive science that humans process continuous speech by routinely chunking it up into smaller units. The nature of the process is open to debate, which is complicated by the apparent existence of two entirely different chunking processes, both of which seem to be warranted by the limitations of working memory. To overcome them, humans seem to both combine items into larger units for future retrieval (usage-based chunking), and partition incoming streams into temporal groups (perceptual chunking). To determine linguistic properties and cognitive constraints of perceptual chunking, most previous research has employed short-constructed stimuli modeled on written language. In contrast, we presented linguistically naïve listeners with excerpts of natural speech from corpora and collected their intuitive perceptions of chunk boundaries. We then used mixed-effects logistic regression models to find out to what extent pauses, prosody, syntax, chunk duration, and surprisal predict chunk boundary perception. The results showed that all cues were important, suggesting cue degeneracy, but with substantial variation across listeners and speech excerpts. Chunk duration had a strong effect, supporting the cognitive constraint hypothesis. The direction of the surprisal effect supported the distinction between perceptual and usage-based chunking.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Anurova, I., Vetchinnikova, S., Dobrego, A., Williams, N., Mikusova, N., Suni, A., Mauranen, A., & Palva, S. (2022). Event-related responses reflect chunk boundaries in natural speech. NeuroImage, 255, 119203. https://doi.org/10.1016/j.neuroimage.2022.119203CrossRefGoogle ScholarPubMed
Auer, P. (1999). Language in time: The rhythm and tempo of spoken interaction. Oxford University Press.Google Scholar
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 148. https://doi.org/10.18637/jss.v067.i01CrossRefGoogle Scholar
Baumann, S., & Winter, B. (2018). What makes a word prominent? Predicting untrained German listeners’ perceptual judgments. Journal of Phonetics, 70, 2038.CrossRefGoogle Scholar
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.xGoogle Scholar
Biber, D., Johansson, S., Leech, G., Conrad, S., & Finegan, E. (1999). Longman grammar of spoken and written English. Longman.Google Scholar
Boersma, P., & Weenink, D. (2022). Praat: Doing phonetics by computer (6.2.14). http://www.praat.org/Google Scholar
Bögels, S., Schriefers, H., Vonk, W., & Chwilla, D. J. (2011). Prosodic breaks in sentence processing investigated by event-related potentials. Language and Linguistics Compass, 5(7). https://doi.org/10.1111/j.1749-818X.2011.00291.xCrossRefGoogle Scholar
Bornkessel-Schlesewsky, I., Staub, A., & Schlesewsky, M. (2016). The timecourse of sentence processing in the brain. In Hickok, G. & Small, S. L. (Eds.), Neurobiology of language (pp. 607620). Elsevier. https://doi.org/10.1016/B978-0-12-407794-2.00049-3CrossRefGoogle Scholar
Carter, R., & McCarthy, M. (1995). Grammar and the spoken language. Applied Linguistics, 16(2), 141158. https://doi.org/10.1093/applin/16.2.141CrossRefGoogle Scholar
Carter, R., & McCarthy, M. (2006). Cambridge grammar of English: A comprehensive guide. Cambridge University Press.Google Scholar
Christiansen, M. H., & Chater, N. (2016). The now-or-never bottleneck: A fundamental constraint on language. Behavioral and Brain Sciences, 39, E62. https://doi.org/10.1017/S0140525X1500031XCrossRefGoogle ScholarPubMed
Cole, J. (2015). Prosody in context: A review. Language, Cognition and Neuroscience, 30(1–2), 131. https://doi.org/10.1080/23273798.2014.963130CrossRefGoogle Scholar
Cole, J., Mahrt, T., & Roy, J. (2017). Crowd-sourcing prosodic annotation. Computer Speech & Language, 45, 300325. https://doi.org/10.1016/j.csl.2017.02.008CrossRefGoogle Scholar
Culbertson, G., Andersen, E., & Christiansen, M. H. (2020). Using utterance recall to assess second language proficiency. Language Learning, 70, 104132. https://doi.org/10.1111/lang.12399CrossRefGoogle Scholar
Dik, S. C. (1997). The theory of functional grammar: Complex and derived constructions. Walter de Gruyter.CrossRefGoogle Scholar
Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158164. https://doi.org/10.1038/nn.4186CrossRefGoogle ScholarPubMed
Ding, N., Patel, A. D., Chen, L., Butler, H., Luo, C., & Poeppel, D. (2017). Temporal modulations in speech and music. Neuroscience & Biobehavioral Reviews, 81, 181187. https://doi.org/10.1016/j.neubiorev.2017.02.011CrossRefGoogle ScholarPubMed
Doelling, K. B., Arnal, L. H., Ghitza, O., & Poeppel, D. (2014). Acoustic landmarks drive delta–theta oscillations to enable speech comprehension by facilitating perceptual parsing. NeuroImage, 85, 761768. https://doi.org/10.1016/j.neuroimage.2013.06.035CrossRefGoogle ScholarPubMed
Drury, J. E., Baum, S. R., Valeriote, H., & Steinhauer, K. (2016). Punctuation and implicit prosody in silent reading: An ERP study investigating English garden-path sentences. Frontiers in Psychology, 7, 112. https://doi.org/10.3389/fpsyg.2016.01375CrossRefGoogle ScholarPubMed
Edelman, G. M., & Gally, J. A. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences, 98(24), 1376313768. https://doi.org/10.1073/pnas.231499798CrossRefGoogle ScholarPubMed
Edlund, J., & Heldner, M. (2005). Exploring prosody in interaction control. Phonetica, 62, 215226. https://doi.org/10.1159/000090099CrossRefGoogle ScholarPubMed
Ellis, N. C. (2017). Chunking in language usage, learning and change: I don’t know. In Hundt, M., Mollin, S. & Pfenninger, S. E. (Eds.), The changing English language (pp. 113147). Cambridge University Press. https://doi.org/10.1017/9781316091746.006CrossRefGoogle Scholar
Ericsson, K. A., Chase, W. G., & Faloon, S. (1980). Acquisition of a memory skill. Science, 208(4448), 11811182. https://doi.org/10.1126/science.7375930CrossRefGoogle Scholar
Ferreira, F. (1993). The creation of prosody during sentence processing. Psychological Review, 100, 233253.CrossRefGoogle Scholar
Ferreira, F. (2007). Prosody and performance in language production. Language and Cognitive Processes, 22, 11511177. https://doi.org/10.1080/01690960701461293CrossRefGoogle Scholar
Frank, S. L., Otten, L. J., Galli, G., & Vigliocco, G. (2015). The ERP response to the amount of information conveyed by words in sentences. Brain and Language, 140, 111. https://doi.org/10.1016/j.bandl.2014.10.006CrossRefGoogle Scholar
Frazier, L., Clifton, C., & Carlson, K. (2004). Don’t break, or do: Prosodic boundary preferences. Lingua, 114(1), 327. https://doi.org/10.1016/S0024-3841(03)00044-5CrossRefGoogle Scholar
Gee, J. P., & Grosjean, F. (1984). Empirical evidence for narrative structure. Cognitive Science, 8(1), 5985. https://doi.org/10.1016/S0364-0213(84)80025-7CrossRefGoogle Scholar
Ghitza, O., & Greenberg, S. (2009). On the possible role of brain rhythms in speech perception: Intelligibility of time-compressed speech with periodic and aperiodic insertions of silence. Phonetica, 66(1–2), 113126. https://doi.org/10.1159/000208934CrossRefGoogle ScholarPubMed
Gilbert, A. C., Boucher, V. J., & Jemel, B. (2015). The perceptual chunking of speech: A demonstration using ERPs. Brain Research, 1603, 101113. https://doi.org/10.1016/j.brainres.2015.01.032CrossRefGoogle ScholarPubMed
Giraud, A.-L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511517. https://doi.org/10.1038/nn.3063CrossRefGoogle ScholarPubMed
Goldberg, A. E. (2003). Constructions: A new theoretical approach to language. Trends in Cognitive Sciences, 7(5), 219224. https://doi.org/10.1016/S1364-6613(03)00080-9CrossRefGoogle ScholarPubMed
Halliday, M. A. K. (2009). Language and education. Continuum.Google Scholar
Halliday, M. A. K., & Matthiessen, C. M. I. M. (2004). An introduction to functional grammar (3rd ed). Arnold.Google Scholar
Henke, L., & Meyer, L. (2021). Endogenous oscillations time-constrain linguistic segmentation: Cycling the garden path. Cerebral Cortex, 31(9), 42894299. https://doi.org/10.1093/cercor/bhab086CrossRefGoogle ScholarPubMed
Hitch, G. J., Burgess, N., Towse, J. N., & Culpin, V. (1996). Temporal grouping effects in immediate recall: A working memory analysis. The Quarterly Journal of Experimental Psychology Section A, 49(1), 116139. https://doi.org/10.1080/713755609CrossRefGoogle Scholar
Huddleston, R., & Pullum, G. K. (2002). The Cambridge grammar of the English language. Cambridge University Press. https://doi.org/10.1017/9781316423530CrossRefGoogle Scholar
Hwang, H., & Steinhauer, K. (2011). Phrase length matters: The interplay between implicit prosody and syntax in Korean “garden path” sentences. Journal of Cognitive Neuroscience, 23(11), 35553575. https://doi.org/10.1162/jocn_a_00001CrossRefGoogle ScholarPubMed
Inbar, M., Grossman, E., & Landau, A. N. (2020). Sequences of intonation units form a ~ 1 Hz rhythm. Scientific Reports, 10(1), 15846. https://doi.org/10.1038/s41598-020-72739-4CrossRefGoogle Scholar
Itzhak, I., Pauker, E., Drury, J. E., Baum, S. R., & Steinhauer, K. (2010). Event-related potentials show online influence of lexical biases on prosodic processing. NeuroReport, 21(1). https://doi.org/10.1097/WNR.0b013e328330251dCrossRefGoogle ScholarPubMed
Kaufeld, G., Bosker, H. R., & Martin, A. E. (2020). Linguistic structure and meaning organize neural oscillations into a content-specific hierarchy. The Journal of Neuroscience, 40(49), 94679475.CrossRefGoogle ScholarPubMed
Keitel, A., Gross, J., & Kayser, C. (2018). Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features. PLOS Biology, 16(3), e2004473. https://doi.org/10.1371/journal.pbio.2004473CrossRefGoogle ScholarPubMed
Kerkhofs, R., Vonk, W., Schriefers, H., & Chwilla, D. J. (2007). Discourse, syntax, and prosody: The brain reveals an immediate interaction. Journal of Cognitive Neuroscience, 19(9), 14211434. https://doi.org/10.1162/jocn.2007.19.9.1421CrossRefGoogle ScholarPubMed
Leech, G. (2000). Grammars of spoken English: New outcomes of corpus-oriented research. Language Learning, 50(4), 675724. https://doi.org/10.1111/0023-8333.00143CrossRefGoogle Scholar
Leufkens, S. (2020). A functionalist typology of redundancy. Revista Da ABRALIN, 19(3), 79103. https://doi.org/10.25189/rabralin.v19i3.1722Google Scholar
Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 11261177. https://doi.org/10.1016/j.cognition.2007.05.006CrossRefGoogle ScholarPubMed
Lüdecke, D. (2022). sjPlot: Data Visualization for Statistics in Social Science. R package version 2.8.12. https://CRAN.R-project.org/package=sjPlotGoogle Scholar
MacWhinney, B. (2012). A tale of two paradigms. In Kail, M. & Hickmann, M. (Eds.), Language acquisition and language disorders (Vol. 52, pp. 1732). John Benjamins. https://doi.org/10.1075/lald.52.03macGoogle Scholar
Männel, C., Schipke, C. S., & Friederici, A. D. (2013). The role of pause as a prosodic boundary marker: Language ERP studies in German 3- and 6-year-olds. Developmental Cognitive Neuroscience, 5, 8694. https://doi.org/10.1016/j.dcn.2013.01.003CrossRefGoogle ScholarPubMed
McCauley, S. M., & Christiansen, M. H. (2014). A computational model. Mental Lexicon, 9(3), 419436. https://doi.org/10.1075/ml.9.3.03mccCrossRefGoogle Scholar
McCauley, S. M., & Christiansen, M. H. (2019). Language learning as language use: A cross-linguistic model of child language development. Psychological Review, 126(1), 151. https://doi.org/10.1037/rev0000126CrossRefGoogle ScholarPubMed
Meyer, L., Henry, M. J., Gaston, P., Schmuck, N., & Friederici, A. D. (2017). Linguistic bias modulates interpretation of speech via neural delta-band oscillations. Cerebral Cortex, 27(9), 42934302. https://doi.org/10.1093/cercor/bhw228Google ScholarPubMed
Meyer, L., Sun, Y., & Martin, A. E. (2020). Entraining” to speech, generating language? Language, Cognition and Neuroscience, 35(9), 11381148. https://doi.org/10.1080/23273798.2020.1827155CrossRefGoogle Scholar
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 8197. https://doi.org/10.1037/h0043158CrossRefGoogle ScholarPubMed
Monaghan, P. (2017). Canalization of language structure from environmental constraints: A computational model of word learning from multiple cues. Topics in Cognitive Science, 9(1), 2134. https://doi.org/10.1111/tops.12239CrossRefGoogle ScholarPubMed
Nakagawa, S., Johnson, P. C. D., & Schielzeth, H. (2017). The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of The Royal Society Interface, 14(134), 20170213. https://doi.org/10.1098/rsif.2017.0213CrossRefGoogle ScholarPubMed
Noppeney, U., Friston, K. J., & Price, C. J. (2004). Degenerate neuronal systems sustaining cognitive functions. Journal of Anatomy, 205(6), 433442. https://doi.org/10.1111/j.0021-8782.2004.00343.xCrossRefGoogle ScholarPubMed
Ostendorf, M., Price, P., & Shattuck-Hufnagel, S. (2005). The Boston University Radio News Corpus. Technical report. Boston University Technical Report No. ECS-95-001, March 1995.Google Scholar
Phipson, B., & Smyth, G. K. (2010). Permutation p-values should never be zero: Calculating exact p-values when permutations are randomly drawn. Statistical Applications in Genetics and Molecular Biology, 9(1), 112. https://doi.org/10.2202/1544-6115.1585CrossRefGoogle ScholarPubMed
Pierrehumbert, J. (1980). The phonetics and phonology of English intonation. Doctoral dissertation, Massachusetts Institute of Technology.Google Scholar
Pijpops, D., & Zehentner, E. (2022). How redundant is language really? Agent-recipient disambiguation across time and space. Glossa: A Journal of General Linguistics, 7(1), 141. https://doi.org/10.16995/glossa.8763CrossRefGoogle Scholar
Puoliväli, T., Palva, S., & Palva, J. M. (2020). Influence of multiple hypothesis testing on reproducibility in neuroimaging research: A simulation study and Python-based software. Journal of Neuroscience Methods, 337, 108654. https://doi.org/10.1016/j.jneumeth.2020.108654CrossRefGoogle ScholarPubMed
Quirk, R., Greenbaum, S., Leech, G., & Svartvik, J. (1985). A comprehensive grammar of the English language. Longman.Google Scholar
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.Google Scholar
Reimers, N., & Gurevych, I. (2020). Making monolingual sentence embeddings multilingual using knowledge distillation. (arXiv:2004.09813). arXiv. https://doi.org/10.48550/arXiv.2004.09813CrossRefGoogle Scholar
Rimmele, J. M., Poeppel, D., & Ghitza, O. (2021). Acoustically driven cortical δ oscillations underpin prosodic chunking. ENeuro, 8(4), 115. https://doi.org/10.1523/ENEURO.0562-20.2021CrossRefGoogle ScholarPubMed
Roll, M., Lindgren, M., Alter, K., & Horne, M. (2012). Time-driven effects on parsing during reading. Brain and Language, 121(3), 267272. https://doi.org/10.1016/j.bandl.2012.03.002CrossRefGoogle ScholarPubMed
Roy, J., Cole, J., & Mahrt, T. (2017). Individual differences and patterns of convergence in prosody perception. Laboratory Phonology: Journal of the Association for Laboratory Phonology, 8(1), 22. https://doi.org/10.5334/labphon.108CrossRefGoogle Scholar
Ryan, J. (1969). Grouping and short-term memory: Different means and patterns of grouping. Quarterly Journal of Experimental Psychology, 21(2), 137147. https://doi.org/10.1080/14640746908400206CrossRefGoogle ScholarPubMed
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 19261928.CrossRefGoogle ScholarPubMed
Schafer, A., Speer, S., Warren, P., & White, S. D. (2000). Intonational disambiguation in sentence production and comprehension. Journal of Psycholinguistic Research, 29, 169182. https://doi.org/10.1023/A:1005192911512CrossRefGoogle ScholarPubMed
Schiel, F. (1999). Automatic phonetic transcription of non-prompted speech. In Ohala, J. J. (Ed.), Proceedings of the 14th international congress of phonetic sciences (pp. 607610). San Francisco. https://doi.org/10.5282/ubm/epub.13682Google Scholar
Schremm, A., Horne, M., & Roll, M. (2015). Brain responses to syntax constrained by time-driven implicit prosodic phrases. Journal of Neurolinguistics, 35, 6884. https://doi.org/10.1016/j.jneuroling.2015.03.002CrossRefGoogle Scholar
Selkirk, E. (1984). Prosody and syntax: The relation between sound and structure. MIT Press.Google Scholar
Selkirk, E. O. (1978). On prosodic structure and its relation to syntactic structure. In Proceeding of the Sloan workshop on the mental representation of phonology, University of Massachusetts.Google Scholar
Shain, C., Blank, I. A., van Schijndel, M., Schuler, W., & Fedorenko, E. (2020). FMRI reveals language-specific predictive coding during naturalistic sentence comprehension. Neuropsychologia, 138, 107307. https://doi.org/10.1016/j.neuropsychologia.2019.107307CrossRefGoogle ScholarPubMed
Sinclair, J., & Mauranen, A. (2006). Linear unit grammar integrating speech and writing. John Benjamins.CrossRefGoogle Scholar
Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading time is logarithmic. Cognition, 128(3), 302319. https://doi.org/10.1016/j.cognition.2013.02.013CrossRefGoogle ScholarPubMed
Suni, A. (2017). Wavelet Prosody Toolkit. https://github.com/asuni/wavelet_prosody_toolkitGoogle Scholar
Suni, A., Šimko, J., Aalto, D., & Vainio, M. (2017). Hierarchical representation and estimation of prosody using continuous wavelet transform. Computer Speech & Language, 45, 123136. https://doi.org/10.1016/j.csl.2016.11.001CrossRefGoogle Scholar
Stehwien, S., & Meyer, L. (2021). Rhythm comes, rhythm goes: Short-term periodicity of prosodic phrasing [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/c9sgbCrossRefGoogle Scholar
Steinhauer, K., Alter, K., & Friederici, A. D. (1999). Brain potentials indicate immediate use of prosodic cues in natural speech processing. Nature Neuroscience, 2(2), 191196. https://doi.org/10.1038/5757CrossRefGoogle ScholarPubMed
Swerts, M., & Hirschberg, J. (1998). Prosody and conversation: An introduction. Language and Speech, 41, 229233.CrossRefGoogle Scholar
Swerts, M., & Hirschberg, J. (2008). Prosodic predictors of upcoming positive or negative content in spoken messages. Journal of the Acoustical Society of America, 128, 13371344. https://doi.org/10.1121/1.3466875CrossRefGoogle Scholar
Tal, S., & Arnon, I. (2022). Redundancy can benefit learning: Evidence from word order and case marking. Cognition, 224, 105055. https://doi.org/10.1016/j.cognition.2022.105055CrossRefGoogle ScholarPubMed
Terrace, H. S. (2001). Chunking and serially organized behavior in pigeons, monkeys and humans. In Cook, R. G. (Ed.), Avian visual cognition. Comparative Cognition Press.Google Scholar
Tiedemann, J. (2012). Parallel Data, Tools and Interfaces in OPUS. In Proceedings of the 8th international conference on language resources and evaluation (LREC’2012)(p. 5).Google Scholar
Truckenbrodt, H. (1999). On the relation between syntactic phrases and phonological phrases. Linguistic Inquiry, 30(2), 219255.CrossRefGoogle Scholar
Varnet, L., Ortiz-Barajas, M. C., Erra, R. G., Gervain, J., & Lorenzi, C. (2017). A cross-linguistic study of speech modulation spectra. The Journal of the Acoustical Society of America, 142(4), 19761989. https://doi.org/10.1121/1.5006179CrossRefGoogle ScholarPubMed
Vetchinnikova, S., Konina, A., Williams, N., Mikušová, N., & Mauranen, A. (2022). Perceptual chunking of spontaneous speech: Validating a new method with non-native listeners. Research Methods in Applied Linguistics, 1(2), 100012. https://doi.org/10.1016/j.rmal.2022.100012CrossRefGoogle Scholar
Vetchinnikova, S., Mauranen, A., & Mikušová, N. (2017). ChunkitApp: Investigating the relevant units of online speech processing. In INTERSPEECH 2017 – 18th annual conference of the international speech communication Association (pp. 811812).Google Scholar
Wagner, M., & Watson, D. G. (2010). Experimental and theoretical advances in prosody: A review. Language and Cognitive Processes, 25(7–9), 905945. https://doi.org/10.1080/01690961003589492CrossRefGoogle ScholarPubMed
Watson, D., & Gibson, E. (2004). The relationship between intonational phrasing and syntactic structure in language production. Language and Cognitive Processes, 19(6), 713755. https://doi.org/10.1080/01690960444000070CrossRefGoogle Scholar
Wickelgren, W. A. (1964). Size of rehearsal group and short-term memory. Journal of Experimental Psychology, 68, 413419. https://doi.org/10.1037/h0043584CrossRefGoogle ScholarPubMed
Winter, B. (2014). Spoken language achieves robustness and evolvability by exploiting degeneracy and neutrality. BioEssays, 36(10), 960967. https://doi.org/10.1002/bies.201400028CrossRefGoogle ScholarPubMed
BASE: Thompson, P., & Nesi, H. (2001). The British Academic Spoken English (BASE) Corpus Project. Language Teaching Research, 5(3), 263264. https://doi.org/10.1177/136216880100500305Google Scholar
ELFA (2008). The Corpus of English as a Lingua Franca in Academic Settings. Director: Anna Mauranen. http://www.helsinki.fi/elfaGoogle Scholar
MICASE: Simpson, R. A., Briggs, S. L, Ovens, J., & Swales, J.M. 2002. The Michigan Corpus of Academic Spoken English. Ann Arbor, MI: The Regents of the University of Michigan.Google Scholar
VOICE. (2013). The Vienna-Oxford International Corpus of English (version 2.0 XML). Director: Barbara Seidlhofer; Researchers: Angelika Breiteneder, Theresa Klimpfinger, Stefan Majewski, Ruth Osimk-Teasdale, Marie-Luise Pitzl, Michael Radeka.Google Scholar
BASE: Thompson, P., & Nesi, H. (2001). The British Academic Spoken English (BASE) Corpus Project. Language Teaching Research, 5(3), 263264. https://doi.org/10.1177/136216880100500305Google Scholar
ELFA (2008). The Corpus of English as a Lingua Franca in Academic Settings. Director: Anna Mauranen. http://www.helsinki.fi/elfaGoogle Scholar
MICASE: Simpson, R. A., Briggs, S. L, Ovens, J., & Swales, J.M. 2002. The Michigan Corpus of Academic Spoken English. Ann Arbor, MI: The Regents of the University of Michigan.Google Scholar
VOICE. (2013). The Vienna-Oxford International Corpus of English (version 2.0 XML). Director: Barbara Seidlhofer; Researchers: Angelika Breiteneder, Theresa Klimpfinger, Stefan Majewski, Ruth Osimk-Teasdale, Marie-Luise Pitzl, Michael Radeka.Google Scholar