Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-11T01:51:36.752Z Has data issue: false hasContentIssue false

Cold compression of solid matter by intense heavy-ion-beam-generated pressure waves

Published online by Cambridge University Press:  01 March 2004

C. CONSTANTIN
Affiliation:
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
E. DEWALD
Affiliation:
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
C. NIEMANN
Affiliation:
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
D.H.H HOFFMANN
Affiliation:
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany Gesellschaft für Schwerionenforschung Darmstadt mbH, Darmstadt, Germany
S. UDREA
Affiliation:
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
D. VARENTSOV
Affiliation:
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
J. JACOBY
Affiliation:
Gesellschaft für Schwerionenforschung Darmstadt mbH, Darmstadt, Germany
U.N. FUNK
Affiliation:
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
U. NEUNER
Affiliation:
Gesellschaft für Schwerionenforschung Darmstadt mbH, Darmstadt, Germany
A. TAUSCHWITZ
Affiliation:
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany

Abstract

Experimental investigations of heavy-ion-generated shock waves in solid, multilayered targets were performed by applying a Schlieren and a laser-deflection technique. Shock velocity and the corresponding pressures, temporal and spatial density profiles inside the material compressed by multiple shock waves, and details of the shock dynamics were determined. Important for equation-of-state and phase transition studies, such experiments extend their relevance to inertial confinement fusion and astrophysical fundamental research.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Constantin, C., Dewald, E., Niemann, C., Tahir, N.A., Shutov, A., Kozyreva, A., Schlegel, T., Udrea, S., Varentsov, D., Jacoby, J., Tauschwitz, A., Funk, U.N., Neuner, L.I., Spiller, P. & Hoffman, D.H.H. (2002). Laser Part. Beams 20, 521526.
Decker, G., Deutsch, R., Kies, W. & Rybach, J. (1985). App. Opt. 24, 823.
Gutbrod, H., Gross, K.D., Henning, W. & Metag, V. (2002). An International Accelerator Facility for Beams of Ions and Antiprotons. Conceptual Design Report. Darmstadt: GSI.
Jahoda, F.C. & Sawyer, G.A. (1971). Methods of Experimental Physics (Lovberg, R.H. & Griem, H.R., Eds). New York: Academic Press.
Merzkirch, W. (1971). Methods of Experimental Physics (Emrich, R.J., Ed.), pp. 346352. Vol. 18, Part A. New York: Academic Press.
Stetter, M., Neuner, U., Stöwe, S., Dornik, M., Hoffmann, D.H.H., Kowalewicz, R., Spiller, P. & Tauschwitz, A. (1996). Fusion Eng. Design3233, 503.
Zhang, B.-P. & Müller, F. (1984). High Temp.—High Pressures. 16, 475.
Ziegler, J.F., Biersack, J.P. & Littmark, U. (1996). The Stopping and Ranges of Ions in Solids. New York: Pergamon.