Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T23:35:42.770Z Has data issue: false hasContentIssue false

Design of an ICF plant using a nuclear-driven solid-state laser

Published online by Cambridge University Press:  09 March 2009

L.-T.S. Lin
Affiliation:
University of Missouri-Columbia
M.A. Prelas
Affiliation:
University of Missouri-Columbia
Z. He
Affiliation:
University of Missouri-Columbia
J.T. Bahns
Affiliation:
University of Connecticut
W.C. Stwalley
Affiliation:
University of Connecticut
G.H. Miley
Affiliation:
University of Illinois at Urbana, Champaign
M. Petra
Affiliation:
University of Illinois at Urbana, Champaign
E.G. Batyrbekov
Affiliation:
Nuclear Physics Institute, Alma-Ata, Kazakhstan

Abstract

An ICF plant is designed to use nuclear-driven flashlamp-pumped solid-state lasers as fusion drivers. It is proposed to use a separated fission reactor with aerosol fuel to drive alkali metal excimer flashlamps as the pumping source for solid-state lasers. The first observation of nuclear-excited sodium excimer emission at 436 nm in a TRIGA reactor with 815 Torr of He-3 and 60 Torr of sodium vapor (at T = 924 K) is reported. The experiment demonstrates the feasibility of a nuclear-driven alkali metal excimer lamp. The compatibility of alkali metal excimers with different laser crystals is evaluated for driver efficiency. High overall laser efficiency ensures large fractional output power extraction from nuclear fusion by this plant. The suitability of laser crystals for the ICF plant is also presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bahns, J.T. & Stwalley, W.C. 1984 Appl. Phys. Lett. 44, 826.CrossRefGoogle Scholar
Bahns, J.T. 1993 Private communication.Google Scholar
Bahns, J.T. 1994 Private communication.Google Scholar
Boody, F.P. 1991 Ph.D. Dissertation, Nuclear Engineering Program, University of Missouri-Columbia.Google Scholar
Chung, A.K., & Prelas, M.A. 1984 Laser Part. Beam 2, 201.CrossRefGoogle Scholar
Gu, G. 1987 Ph.D. Dissertation, Nuclear Engineering Program, University of Missouri-Columbia.Google Scholar
Herrmann, A. et al. 1978 J. Chem. Phys. 68, 2327.CrossRefGoogle Scholar
Koechner, W. 1988 Solid-State Laser Engineering, 2nd Ed. (Springer-Verlag, Berlin, Heidelberg), p. 134.CrossRefGoogle Scholar
Koningstein, J.A. & Geusic, J.E. 1964 Phys. Rev. 136, A711.Google Scholar
Luh, W. et al. 1988 J. Chem. Phys. 88, 2235.CrossRefGoogle Scholar
Magnante, P.C. 1972 IEEE J. Quant. Electron. 8, 440.CrossRefGoogle Scholar
Moulton, P.F. 1985 Tunable Solid State Lasers: Proceedings of the First International Conference, La Jolla, CA (06 13–15, 1984), (Springer-Verlag, Berlin, Heidelberg), pp. 410.CrossRefGoogle Scholar
Pichler, G. et al. 1986 Chem. Phys. Lett. 129, 425.CrossRefGoogle Scholar
Prelas, M.A. 1989 In Proc. of the Int. Conf. on Lasers, 263.Google Scholar
Prelas, M.A. & Boody, F.P. 1992 Laser Interaction and Related Plasma Phenomena, Vol. 10 (Plenum Press, New York), p. 67.CrossRefGoogle Scholar
Prelas, M.A. et al. 1984 In IEEE Int. Conf. on Plasma Sci., IEEE Publication Number 84CH1958–8, 38.Google Scholar
Prelas, M.A. et al. 1988 Laser Part. Beam 6, 25.CrossRefGoogle Scholar
Quarles, G.J. et al. 1988 Phys. Rev. B 38, 9996.CrossRefGoogle Scholar
Reed, E. 1985 IEEE J. Quant. Electron. 21, 1625.CrossRefGoogle Scholar
Schlejen, J. et al. 1986 Chem. Phys. Lett. 128,489.CrossRefGoogle Scholar
Stwalley, W.C. & Bahns, J.T. 1993 Laser Part. Beam 11, 185.CrossRefGoogle Scholar
Verdeyen, J.T. 1989 Laser Electronics, 2nd Ed. (Prentice Hall, Inc., Englewood Cliffs, NJ), p. 247.Google Scholar
Walling, J.C. et al. 1980 IEEE J. Quant. Electron. 16, 1302.CrossRefGoogle Scholar
Wood, D.L. 1965 J. Chem. Phys. 42, 3404.CrossRefGoogle Scholar