Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T04:45:08.671Z Has data issue: false hasContentIssue false

Full conserving dielectric function for plasmas at any degeneracy

Published online by Cambridge University Press:  17 June 2010

Manuel D. Barriga-Carrasco*
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
*
Address correspondence and reprint requests to: Manuel D. Barriga-Carrasco, E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain. E-mail: manueld.barriga@uclm.es

Abstract

Dielectric functions of an electron plasma are calculated for an electron gas in which number, momentum, and energy are conserved during electron-electron collisions. They are compared with others in the literature, revealing that, in general, that imposition of the conservation laws tends to make the full conserving dielectric response more similar to the random phase approximation dielectric response than without it. This is due to the fact that in the random phase approximation model all the conservation laws are also enforced. Our model is checked for other plasma degeneracies; concretely we consider partially degenerate plasmas and classical plasmas. The behaviour of the dielectric functions of these plasmas is similar to the degenerate one. Differences among dielectric functions are more significant than for the degenerate case, but it is mainly due to low relaxation time values. The most relevant issue for these plasmas is the fact that the consideration of energy conservation in the dielectric function is more important in these cases, because plasma temperature is significant.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abril, I., Garcia-Molina, R., Denton, C.D., Pérez-Pérez, F.J. & Arista, N.R. (1998). Dielectric description of wakes and stopping powers in solids. Phys. Rev. A 58, 357366.CrossRefGoogle Scholar
Arista, N.R. & Brandt, W. (1984). Dielectric response of quantum plasmas in thermal equilibrium. Phys. Rev. A 29, 14711480.CrossRefGoogle Scholar
Atwal, G.S. & Ashcroft, N.W. (2002). Relaxation of an electron system: conserving approximation. Phys. Rev. B 65, 115109.CrossRefGoogle Scholar
Barriga-Carrasco, M.D. & Garcia-Molina, R. (2004). Simulation of the energy spectra of original versus recombined H2+ molecular ions transmitted through thin foils. Phys. Rev. A 70, 032901/8.CrossRefGoogle Scholar
Barriga-Carrasco, M.D. (2006). Influence of target plasma nuclei collisions on correlated motion of fragmented H2+ protons. Laser Part. Beams 24, 211216.CrossRefGoogle Scholar
Barriga-Carrasco, M.D. (2007). Influence of damping on proton energy loss in plasmas of all degeneracies. Phys. Rev. E 75, 016405/7.Google Scholar
Barriga-Carrasco, M.D. (2008 a). Mermin dielectric function vs. local field corrections on proton stopping in degenerate plasmas. Laser Part. Beams 26, 389395.CrossRefGoogle Scholar
Barriga-Carrasco, M.D. (2008 b). Target electron collisions effects on energy loss straggling of protons in an electron gas at any degeneracy. Phys. Plas. 15, 033103.CrossRefGoogle Scholar
Deutsch, C. (1990). Interaction of ion cluster beams with cold matter and dense-plasmas. Laser Part. Beams 8, 541553.CrossRefGoogle Scholar
Eisenbarth, S., Rosmej, O.N., Shevelko, V.P., Blazevic, A. & Hoffmann, D.H.H. (2007). Numerical simulations of the projectile ion charge difference in solid and gaseous stopping matter. Laser Part. Beams 25, 601611.CrossRefGoogle Scholar
Flowers, E. & Itoh, N. (1976). Transport properties of dense matter. Astrophys. J. 206, 218242.CrossRefGoogle Scholar
Fortmann, C., Bornath, T., Redmer, R., Reinholz, H., Röpke, G., Schwarz, V. & Thiele, R. (2009). X-ray Thomson scattering cross-section in strongly correlated plasmas. Laser Part. Beams 27, 311319.CrossRefGoogle Scholar
Garik, P. & Ashcroft, N.W. (1980). Optical response of metals in a number-conserving relaxation-time approximation. Phys. Rev. B 21, 391.CrossRefGoogle Scholar
Gerike, D.O. (2002). Stopping power for strong beam–plasma coupling. Laser Part. Beams 20, 471474.CrossRefGoogle Scholar
Lindhard, J. (1954). On the properties of a gas of charged particles. K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 28, 157.Google Scholar
Mermin, N.D. (1970). Lindhard dielectric function in the relaxation-time approximation. Phys. Rev. B 1, 23622363.CrossRefGoogle Scholar
Morawetz, K. & Fuhrmann, U. (2000). General response functions for interacting quantum liquids. Phys. Rev. E 61, 22722280.CrossRefGoogle Scholar
Neff, S., Knobloch, R., Hoffmann, D.H.H., Tauschwitz, A. & Yu, S.S. (2006). Transport of heavy-ion beams in a 1 m free-standing plasma channel. Laser Part. Beams 24, 7180.CrossRefGoogle Scholar
Ng, A., Ao, T., Perrot, F., Dharma-Wardana, M.W.C. & Foord, M.E. (2005). Idealized slab plasma approach for the study of warm dense matter. Laser Part. Beams 23, 527537.CrossRefGoogle Scholar
Selchow, A. & Morawetz, K. (1999). Dielectric properties of interacting storage ring plasmas. Phys. Rev. B 59, 10151023.CrossRefGoogle Scholar
Selchow, A., Röpke, G. & Wierling, A. (2002). Extended Mermin-like dielectric function for a two-component plasma. Contrib. Plasma Phys. 42, 43543.0.CO;2-3>CrossRefGoogle Scholar
Röpke, G., Selchow, A., Wierling, A. & Reinholz, H. (1999). Lindhard dielectric function in the relaxation-time approximation and generalized linear response theory. Phys. Lett. A 260, 365369.CrossRefGoogle Scholar