Article contents
Identification and formation mechanism of the transient ion fragments produced in laser-induced dissociation of 1, 1-diamino-2, 2-dinitroethylene
Published online by Cambridge University Press: 06 September 2018
Abstract
Detailed knowledge of dissociation behavior and dissociation products is necessary to understand the stability, sensitivity, and the reactive mechanism of explosives under laser initiation. A time-of-flight mass spectrometer was utilized to detect the transient products of 1,1-diamino-2,2-dinitroethylene (FOX-7) produced under 532 nm pulse laser ablation, the possible attribution of intermediate ion fragments were confirmed. The laser fluence threshold for detectable fragments is about 3.6 J/cm2. The peak intensities of main ions (CN, CNO/C2H4N, NO2, C2N2O, HCN, C2NH2, etc.) increase with the increasing of laser fluence, and reach the maximum at 11.5 J/cm2. Moreover, time-depend changes of ion intensity indicate that the type and degree of reactions are different in different periods. According to the molecular structure of FOX-7 and the intermediate ions, the laser-induced dissociation mechanisms were proposed to illustrate the cause of the fragments which might throw some light on the laser initiation of FOX-7.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2018
References
- 1
- Cited by