Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T21:22:47.458Z Has data issue: false hasContentIssue false

The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams

Published online by Cambridge University Press:  15 October 2007

L. Láska*
Affiliation:
Institute of Physics, ASCR v.v.i., Prague, Czech Republic
J. Badziak
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
S. Gammino
Affiliation:
INFN - Laboratori Nazionali del Sud, Catania, Italy
K. Jungwirth
Affiliation:
Institute of Physics, ASCR v.v.i., Prague, Czech Republic
A. Kasperczuk
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
J. Krása
Affiliation:
Institute of Physics, ASCR v.v.i., Prague, Czech Republic
E. Krouský
Affiliation:
Institute of Physics, ASCR v.v.i., Prague, Czech Republic
P. Kubeš
Affiliation:
Czech Technical University, Prague, Czech Republic
P. Parys
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
M. Pfeifer
Affiliation:
Institute of Physics, ASCR v.v.i., Prague, Czech Republic
T. Pisarczyk
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
K. Rohlena
Affiliation:
Institute of Physics, ASCR v.v.i., Prague, Czech Republic
M. Rosinski
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
L. Ryc´
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
J. Skála
Affiliation:
Institute of Physics, ASCR v.v.i., Prague, Czech Republic
L. Torrisi
Affiliation:
INFN - Laboratori Nazionali del Sud, Catania, Italy
J. Ullschmied
Affiliation:
Institute of Physics, ASCR v.v.i., Prague, Czech Republic Institute of Plasma Physics, ASCR v.v.i., Prague, Czech Republic
A. Velyhan
Affiliation:
Institute of Physics, ASCR v.v.i., Prague, Czech Republic
J. Wolowski
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
*
Address correspondence and reprint requests to: L. Láska, Institute of Physics, ASCR v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic. E-mail: laska@fzu.cz

Abstract

Intense laser-beam interactions with preformed plasma, preceding the laser-target interactions, significantly influence both the ion and X-ray generation. It is due to the laser pulse (its total length, the shape of the front edge, its background, the contrast, the radial homogeneity) as well as plasma (density, temperature) properties. Generation of the super fast (FF) ion groups is connected with a presence of non-linear processes. Saturated maximum of the charge states (independently on the laser intensity) is ascribed to the constant limit radius of the self-focused laser beam. Its longitudinal structure is considered as a possible explanation for the course of some experimental dependencies obtained.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., Galimberti, M., Gizzi, L.A., Mackinnon, A.J., Snavely, R.D., Patel, P., Hatchett, S., Key, M. & Nazarov, W. (2002). Propagation issues and energetic particle production in laser–plasma interactions at intensities exceeding 1019 W/cm2. Laser Part. Beams 20, 3138.Google Scholar
Borghesi, M., Mackinnon, A. J., Gaillard, R., Willi, O., Pukhov, A. & Meyer-ter-Vehn, J. (1998). Large quasistatic magnetic fields generated by a relativistically intense laser pulse propagating in a preionized plasma. Phys. Rev. Lett. 80, 51375140.CrossRefGoogle Scholar
Borisov, A.B., Borovskiy, A.V., Korobkin, V.V., Prokhorov, A.M., Shiryaev, O.B., Shi, X.M., Luk, T.S., McPhearson, A., Solem, J.C., Boyer, K. & Rhodes, C.K. (1992). Observation of relativistic and charge-displacement self-channeling of intense subpicosecond ultraviolet (248 nm) radiation in plasma. Phys. Rev. Lett. 68, 23092312.Google Scholar
Haseroth, H. & Hora, H. (1996). Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources. Laser Part. Beams 14, 393438.CrossRefGoogle Scholar
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Pkilips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762082.Google Scholar
Häuser, T., Scheid, W. & Hora, H. (1992). Theory of ions emitted from a plasma by relativistic self-focusing of laser beams. Phys. Rev. A 45, 1278.CrossRefGoogle ScholarPubMed
Hora, H. & Kane, E.L. (1977). Super-high intensities of lasers by short-range relativistic self-focusing of beams in plasma and dielectric swelling. Appl. Phys. 13, 165170.Google Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasma. J. Opt. Soc. Amer. 65, 882886.CrossRefGoogle Scholar
Hora, H. (1969). Self-focusing of laser beams in a plasma by ponderomotive forces. Z. Physik 226, 156159.CrossRefGoogle Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.Google Scholar
Jungwirth, K., Cejnarová, A., Juha, L., Králiková, B., Krása, J., Krouský, E., Krupičková, P., Láska, L., Mašek, K., Mocek, T.Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skála, J., Straka, P. & Ullschmied, J. (2001). The Prague Asterix Laser System PALS. Phys. Plasmas 8, 24952501.CrossRefGoogle Scholar
Kaluza, M., Schreiber, J., Santala, M.I.K., Tsakiris, G.D., Eidmann, K., Meyer-ter-Vehn, J. & Witte, K.J. (2004). Influence of the Laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett. 93, 04503.CrossRefGoogle ScholarPubMed
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Rohlena, K., Skala, J. & Hora, H. (2006). Stable dense plasma jets produced at laser power densities around 1014 W/cm2. Phys. Plasmas 13, 062704.CrossRefGoogle Scholar
Krása, J. (2004). Diagnostics for laser ion sources. Workshop PPLA-2003, Messina (Eds.: Gammino, S., Mezzasalma, A., Neri, F., Torrisi, L.), World Scientific, Hong Kong, p. 109117.Google Scholar
Láska, L., Badziak, J., Boody, F.P., Gammino, S., Hora, H., Jungwirth, K., Krása, J., Parys, P., Pfeifer, M., Rohlena, K., Torrisi, L., Ullschmid, J., Wolowski, J. & Woryna, E. (2003). Generation of multiply charged ions at low and high laser-power densities. Plasma Phys. Control. Fusion 45, 585599.CrossRefGoogle Scholar
Láska, L., Jungwirth, K., Králiková, B., Krása, J., Pfeifer, M., Rohlena, K., Skála, J., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Woryna, E., Torrisi, L., Gammino, S. & Boody, F.P. (2004 a). Charge-energy distribution of Ta ions from plasmas produced by 1ω and 3ω frequencies of a high-power iodine laser. Rev. Sci. Instrum. 75, 15881591.Google Scholar
Láska, L., Jungwirth, K., Krása, J., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Boody, F.P., Gammino, S. & Torrisi, L. (2004 b) Generation of extreme high laser intensities in plasma. Czech. J. Phys. 54, C370C377.Google Scholar
Láska, L., Jungwirth, K., Krása, J., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Gammino, S., Torrisi, L. & Boody, F.P. (2005 a). Charge-state and energy enhancement of laser-produced ions due to nonlinear processes in preformed plasma. Appl. Phys. Lett. 86, 081502.Google Scholar
Láska, L., Ryc, L., Badziak, J., Boody, F.P., Gammino, S., Jungwirth, K., Krasa, J., Krousky, E., Mezzasalma, A., Parys, P., Pfeifer, M., Rohlena, K., Torrisi, L., Ullschmied, J. & Wolowski, J. (2005 b). Correlation of highly charged ion and X-ray emissions from the laser-produced plasma in the presence of non-linear phenomena. Rad. Eff. Def. Solids 160, 557566.Google Scholar
Láska, L., Jungwirth, K., Krása, J., Pfeifer, M., Rohlena, K. & Ullschmied, J. (2005 c). The effect of pre-plasma and self-focusing on characteristics of laser-produced ions. Czech. J. Phys. 55, 691699.Google Scholar
Láska, L., Jungwirth, K., Krása, , Krouský, E., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Torrisi, L., Gammino, S. & Boody, F.P. (2006 a). Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions. Laser Part. Beams 24, 175179.Google Scholar
Láska, L., Jungwirth, K., Krása, J., Krouský, E., Pfeifer, M., Rohlena, K., Skála, J., Ullschmied, J., Velyhan, A., Kubeš, P., Badziak, J., Parys, P., Rosinski, M., Ryc, L., Wolowski, J. (2006 b). Experimental studies of interaction of intense long laser pulse with a laser-created Ta plasma. Czech. J. Phys. 56, B506B514.Google Scholar
Láska, L., Badziak, J., Boody, F. P., Gammino, S., Jungwirth, K., Krása, J., Krouský, E., Parys, P., Pfeifer, M., Rohlena, K., Ryć, L., Skála, J., Torrisi, L., Ullschmied, J. & Wołowski, J. (2007). Factors influencing parameters of laser ion sources. Laser Part. Beams 25, 199205.Google Scholar
Margarone, D., Torrisi, L., Gammino, S., Krasa, J., Krousky, E., Laska, L., Pfeifer, M., Rohlena, K., Skala, J., Ullschmied, J., Velyhan, A., Parys, P., Rosinski, M., Ryc, L., Wolowski, J. (2006). Studies of the laser-created craters produced on solid surfaces at various experimental conditions. Czech. J. Phys. 56, B542B549.Google Scholar
Nicolaï, P., Tikhonchuk, V.T., Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Rohlena, K. & Ullschmied, J. (2006). Plasma jets produced in a single laser beam interaction with a planar target. Phys. Plasmas 13, 062701.Google Scholar
Pisarczyk, T., Badziak, J., Kasperczuk, A., Parys, P., Wolowski, J., Woryna, E., Jungwirth, K., Králiková, B., Krása, J., Láska, L., Mašek, K., Pfeifer, M., Rohlena, K., Skála, J., Ullschmied, J., Kálal, M. & Pisarczyk, P. (2002). Fast and slow plasma components produced by the PALS facility — comparison of interferometric and ion diagnostic measurements. Czech. J. Phys. 52, D310D317.Google Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (1996). Relativistic magnetic self-channeling of light in near-critical plasma: Three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76, 39753978.Google Scholar
Rohlena, K., Králiková, B., Krása, J., Láska, L., Mašek, K., Pfeifer, M., Skála, J., Parys, P., Wolowski, J., Woryna, E., Farny, J., Mroz, W., Roudskoy, I., Shamaev, O., Sharkov, B., Shumshurov, A., Bryunetkin, B.A., Haseroth, H., Collier, J., Kuttenberger, A., Langbein, K. & Kugker, H. (1996). Ion production by lasers using high-power densities in a near infrared region. Laser Part. Beams 14, 335345.CrossRefGoogle Scholar
Ryc, L., Badziak, J., Juha, L., Krása, J., Králiková, B., Láska, L., Parys, P., Pfeifer, M., Rohlena, K., Skála, J., Slysz, W., Ullschmie, J., Wegrzecki, M. & Wolowski, J. (2003). The use of silicon photodiodes for X-ray diagnostics in the PALS plasma experiments. Plasma Phys. Contr. Fusion 45, 10791086.Google Scholar
Sharma, A., Verma, M.P., Sodha, M.S. & Kumar, A. (2004). Relativistic guidance of laser beams in plasma. J. Plasma Physics 70, 163173.CrossRefGoogle Scholar
Sun, G.-Z., Ott, E., Lee, Y.C. & Guzdar, P. (1987). Self-focusing of short intense pulses in plasma. Phys. Fluids 30, 526532.Google Scholar
Tallents, G.J., Luther-Davies, B. & Horsburgh, M.A. (1986). EXAFS spectroscopy by continuum soft X-ray emission from a short pulse laser-produced plasma. Aust. J. Phys. 39, 253270.Google Scholar
Torrisi, L., Andò, L., Gammino, S., Krása, J. & Láska, L. (2001). Ion and netral emission from pulsed laser irradiation of metals. Nucl. Instrum. Meth. B 184, 327336.CrossRefGoogle Scholar
Torrisi, L., Gammino, S., Andò, L., Láska, L.K., Krása, J., Rohlena, K., Ullschmied, J., Wolowski, J., Badziak, J. & Parys, P. (2006 a). Equivalent ion temperature in Ta plasma produced by high energy laser ablation. J. Appl. Phys. 99, 083301.CrossRefGoogle Scholar
Torrisi, L., Gammino, S., Láska, L., Krása, J., Rohlena, K., Wolowski, J. (2006 b). Evaluations of electric field in laser-generated pulsed plasma. Czech. J. Phys. 58, B580B586.CrossRefGoogle Scholar
Ullschmied, J. (2006). Overview of laser plasma experiments at PALS. Proceedings of the XXIX ECLIM, Madrid. ISBN: 84-690-2624-0, pp. 5260.Google Scholar
Wada, Y., Yoshio, , Shigemoto, Y. & Ogata, A. (2004). Ion production enhancement by rear-focusing and prepulse in ultrashort-pulse laser interaction with foil targets. Jap. J. Phys. 43, L996L999.CrossRefGoogle Scholar
Wolowski, J., Parys, P., Woryna, E., Láska, L., Mašek Rohlena, K., Mróz, W., Farny, J. (1995). Properties of high-Z laser-produced plasma determined by means of ion diagnostics. 12th Int. Conf. on Laser Interaction and Related Plasma Phenomena, Osaka, April 24–28. AIP Conference Proceedings 369 (Eds. S. Nakai, G.H. Miley), Woodbury, New York, Part one, pp. 521526.Google Scholar
Wolowski, J., Badziak, J., Boody, F.P., Gammino, S., Hora, H., Jungwirth, K., Krása, J., Láska, L., Parys, P., Pfeifer, M., Rohlena, K., Szydlowski, A., Torrisi, L., Ullschmied, J. & Woryna, E. (2003). Characteristics of ion emission from plasma produced by high-energy short-wavelength (438 nm) laser radiation. Plasma Phys. Control. Fusion 45, 10871093.CrossRefGoogle Scholar
Wolowski, J., Badziak, J., Parys, P., Rosinski, M., Ryc, L., Jungwirth, K., Krása, J., Láska, L., Pfeifer, M., Rohlena, K., Ullshmied, J., Mezzasalma, A., Torrisi, L., Gammino, S., Hora, H. & Boody, F.P. (2004). The influence of pre-pulse plasma on ion and X-ray emission from Ta plasma produced by a high-energy laser pulse. Czech. J.Phys. 54, C385C390.Google Scholar
Woryna, E., Parys, P., Wolowski, J. & Mroz, W. (1996). Corpuscular diagnostics and processing methods applied in investigations of laser-produced plasma as a source of highly ionized ions. Laser Part. Beams 14, 293321.Google Scholar
Zverev, E.A., Krasov, V.I., Krinberg, I.A. & Papernyi, V.L. (2005). Formation of a micropinch and generation of multiply charged ions at the front of a current-carrying plasma jet. Plasma Phys. Rep. 31, 843854.Google Scholar