Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T13:09:22.502Z Has data issue: false hasContentIssue false

Introducing a two temperature plasma ignition in inertial confined targets under the effect of relativistic shock waves: The case of DT and pB11

Published online by Cambridge University Press:  10 July 2015

Shalom Eliezer*
Affiliation:
Nuclear Fusion Institute, Polytechnic University of Madrid, Madrid, Spain
Zohar Henis
Affiliation:
Applied Physics Division, Soreq NRC, Yavne, Israel Racah Institute of Physics, Hebrew University, Israel
Noaz Nissim
Affiliation:
Applied Physics Division, Soreq NRC, Yavne, Israel
Shirly Vinikman Pinhasi
Affiliation:
42 Beery, Rehovot, Israel
José Maria Martinez Val
Affiliation:
Nuclear Fusion Institute, Polytechnic University of Madrid, Madrid, Spain
*
Address correspondence and reprint requests to: Shalom Eliezer, Nuclear Fusion Institute, Polytechnic University of Madrid, Madrid, Spain. E-mail: noaznissim@gmail.com

Abstract

A criterion for a two temperature plasma nuclear fusion ignition is derived by using a common model. In particular, deuterium-tritium (DT) and proton–boron11 (pB11) are considered for pre-compressed plasma. The ignition criterion is described by a surface in the three-dimensional space defined by the electron and ion temperatures Te, Ti, and the plasma density times the hot spot dimension, ρ·R. The appropriate fusion ion temperatures Ti are larger than 10 keV for DT and 150 keV for pB11. The required value of ρ·R for pB11 ignition is larger by a factor of 50 or more than for DT, depending on the electron temperature. Furthermore, our ignition criterion obtained here for pB11 fusion is practically impossible for equal electron and ion temperatures. In this paper it is suggested to use a two temperature laser induced shock wave in the intermediate domain between relativistic and non-relativistic shock waves. The laser parameters required for fast ignition are calculated. In particular, we find that for DT case one needs a 3 kJ/1 ps laser to ignite a pre-compressed target at about 600 g/cm3. For pB11 ignition it is necessary to use more than three orders of magnitude of laser energy for the same laser pulse duration.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. & Meyer-Ter-Vehn, J. (2004). The Physics of Inertial Fusion. Oxford: Claredon Press.CrossRefGoogle Scholar
Basov, N.G., Guskov, S.Y. & Feoktistov, L.P. (1992). Thermonuclear gain of ICF targets with direct heating of the ignitor. J. Soviet Laser Res. 13, 396399.CrossRefGoogle Scholar
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W. & Sokolov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001/1–4.CrossRefGoogle ScholarPubMed
Bosch, H.S. & Hale, G.M. (1992). Improved formulas for fusion cross-sections and thermal reactivities. Nucl. Fusion 32, 611631.CrossRefGoogle Scholar
Cicchitelli, L., Hora, H. & Postle, R. (1990). Longitudinal field components of laser beams in vacuum. Phys. Rev. A 41, 37273732.CrossRefGoogle ScholarPubMed
Chu, M.S. (1972). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 413422.CrossRefGoogle Scholar
Eliezer, S. (2002). The Interaction of High-Power Lasers with Plasmas. Boca Raton, Florida: CRC press.CrossRefGoogle Scholar
Eliezer, S. (2012). Relativistic acceleration of micro-foils with prospects for fast ignition. Laser Part. Beams 30, 225232.CrossRefGoogle Scholar
Eliezer, S. (2013). Shock waves and Equations of state related to laser–plasma interaction. In Laser–Plasma Interactions and Applications, 68th Scottish Universities Summer School in Physics, (McKenna, P., Neely, D., Bingham, R. and Jaroszynski, D.A., Eds.), Heidelberg: Springer Publication, pp. 4978.CrossRefGoogle Scholar
Eliezer, S., Hora, H., Kolka, E., Green, F. & Szichman, H. (1995). How double layers accelerate charged particles. Laser Part. Beams 13, 441447.CrossRefGoogle Scholar
Eliezer, S. & Martinez Val, J.M. (1998). Proton-boron 11 fusion reactions induced by heat-detonation burning waves. Laser Part. Beams 16, 581598.CrossRefGoogle Scholar
Eliezer, S. & Martinez Val, J.M. (2011). The comeback of shock waves in inertial fusion energy. Laser Part. Beams 29, 175181.CrossRefGoogle Scholar
Eliezer, S., Nissim, N., Pinhasi, V.S., Raicher, E. & Martinez Val, J.M. (2014a). Ultrafast ignition with relativistic shock waves induced by high power lasers. High Power Laser Sci. Eng. 2, 10. doi: 10.1017/hpl.2014.24CrossRefGoogle Scholar
Eliezer, S., Nissim, N., Raicher, E. & Martinez Val, J.M. (2014b). Relativistic shock waves induced by ultra-high laser pressure. Laser Part. Beams 32, 243251.CrossRefGoogle Scholar
Eliezer, S., Nissim, N., Martinez Val, J.M., Mima, K. & Hora, H. (2014c). Double layer acceleration by laser radiation. Laser Part. Beams 32, 211216.CrossRefGoogle Scholar
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003/1–4.CrossRefGoogle ScholarPubMed
Fortov, V.E. & Lomonosov, I.V. (2010). Shock waves and equations of state of matter. Shock Waves 20, 5371.CrossRefGoogle Scholar
Guskov, S.Y. (2013). Fast ignition of inertial confinement fusion targets. Plasma Phys. Rep. 39, 150.CrossRefGoogle Scholar
Guskov, S.Y., Krokhin, O.N. & Rozanov, V.B. (1976). Similarity solution of thermonuclear burn wave with electron and α conductivities. Nucl. Fusion 16, 957962.CrossRefGoogle Scholar
Guskov, S.Y. & Rozanov, V.B. (1993). Ignition and burn propagation in ICF targets. In Nuclear Fusion by Inertial Confinement: A comprehensive Treatise. (Velarde, G., Ronen, Y. & Martinez Val, J.M., Eds.), Baton Roca, Florida: CRC press, pp. 293320.Google Scholar
Hora, H. (1991). Plasmas of High Temperatures and Density. Heidelberg: Springer.Google Scholar
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double layers produced by nonlinear forces in laser produced plasmas. Phys. Rev Lett. 53, 16501653.CrossRefGoogle Scholar
Hora, H., Lalousis, P., Giuffrida, L., Margarone, D., Korn, G., Eliezer, S., Miley, G., Moustaizis, S. & Mourou, G. (2015). Petawatt laser pulses for proton-boron high gain fusion with avalanche reactions excluding problems of nuclear radiation. Proc. SPIE 9515, 951518. doi: 10.1117/12.2181943.Google Scholar
Hora, H., Lalousis, P. & Moustaizis, S. (2014). Fiber ICAN laser with exawatt picosecond pulses for fusion without nuclear radiation problems. Laser Part. Beams 32, 6368.CrossRefGoogle Scholar
Kouhi, M., Ghoraneviss, M., Malekynia, B., Hora, B., Miley, G.H., Sari, A.H., Azizi, N., & Razavipour, S.S. (2011). Resonance effect for strong increase of fusion gains at thermal compression for volume ignition of Hydrogen Boron-11. Laser Part. Beams 29, 125134.CrossRefGoogle Scholar
Lalousis, P. & Hora, H. (1983). First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction. Laser Part. Beams 1, 283304.CrossRefGoogle Scholar
Lalousis, P., Foldes, I.B. & Hora, H. (2012). Ultra-high acceleration of plasma by picosecond terawatt laser pulses for fast ignition of fusion. Laser Part. Beams 30, 233242.CrossRefGoogle Scholar
Lalousis, P., Hora, H., Eliezer, S., Martinez Val, J.M., Moustaizis, S., Miley, G.H. & Mourou, G. (2013). Shock Mechanisms by ultra-high laser accelerated plasma blocks in solid density targets for fusion. Phys. Lett. A 377, 885.CrossRefGoogle Scholar
Lalousis, P., Hora, H. & Moustaizis, S. (2014). Optimized boron fusion with magnetic trapping by laser driven plasma block initiation at nonlinear forced driven ultrahigh acceleration. Laser Part. Beams 32, 409411.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. (1987). Fluid Mechanics, 2nd edn.Oxford: Pergamon Press.Google Scholar
Lindl, J.D. (1988). Physics of ignition for ICF capsules. In International School of Plasma Physics Piero Caldirola: Inertial Confinement Fusion. (Caruso, A. & Sindoni, E., Eds.), Bologna: Editrice Compositori, pp. 617.Google Scholar
Naumova, N., Schlegel, T., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Hole boring in a DT pellet and fast ion ignition with ultra-intense laser pulses. Phys. Rev. Lett. 102, 025002/1–4.CrossRefGoogle Scholar
Nevins, W.M. & Swain, C. (2000). The thermonuclear fusion coefficient for p-11B reactions. Nucl. Fusion 40, 865872.CrossRefGoogle Scholar
Nuckolls, J.H., Wood, L., Thiessen, A. & Zimmermann, G.B. (1972). Laser compression of matter to super-high densities: Thermonuclear applications. Nature 239, 139142.CrossRefGoogle Scholar
Rozanov, V.B., Verdon, C.P., Decroisette, M., Guskov, S.Y., Lindl, J.D., Nishihara, K. & Takabe, H. (1995). Inertial Confinement Target Physics. Energy from Inertial Fusion Vienna: International Atomic Energy Agency, pp. 2169.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.S. (1994). Ignition and high gain with ultra-powerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Takabe, H., Mima, K. & Nakai, S. (1989). Requirement of uniformity for fuel ignition and uniformity in high neutron yield implosion. Laser Part. Beams 7, 175188.CrossRefGoogle Scholar
Taub, A.H. (1948). Relativistic Rankine–Hugoniot equations. Phys. Rev. 74, 328334.CrossRefGoogle Scholar
Velarde, G. & Carpintero-Santamaria, N. eds. (2007). Inertial Confinement Nuclear Fusion: A Historical Approach by its Pioneers. UK: Foxwell and Davies Pub.Google Scholar
Zeldovich, Y.B. & Raizer, Y.P. (1966). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. New York: Academic Press Publications.Google Scholar