Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T23:39:04.612Z Has data issue: false hasContentIssue false

Measurement of charged particles and cavitation bubble expansion velocities in laser induced breakdown in water

Published online by Cambridge University Press:  08 August 2008

A. Nath
Affiliation:
Department of Physics, Indian Institute of Technology Guwahati, Assam, India
A. Khare*
Affiliation:
Department of Physics, Indian Institute of Technology Guwahati, Assam, India
*
Address correspondence and reprint requests to: Alika Khare, Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. E-mail: alika@iitg.ernet.in

Abstract

The measurement of charged particles and cavitation bubble expansion velocity is reported in a laser induced breakdown in water using beam deflection set-up. Effect of laser power on charged particles, cavitation bubble velocities and higher order bubble oscillations is also studied.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alti, K. & Khare, A. (2006 a). Low-energy low-divergence pulsed indium atomic beam by laser ablation. Laser Part. Beams 24, 4753.Google Scholar
Alti, K. & Khare, A. (2006 b). Sculpted pulsed indium atomic beams via selective laser ablation of thin film. Laser Part. Beams 24, 469473.CrossRefGoogle Scholar
Barnes, P. A. & Rieckhoff, K.E. (1968). Laser induced underwater sparks. Appl. Phys. Lett. 13, 282284.CrossRefGoogle Scholar
Bashir, S., Rafique, M.S. & Ul-Haq, F. (2007). Laser ablation of ion irradiated CR-39. Laser Part. Beams 25, 181191.CrossRefGoogle Scholar
Chen, X.Y., Cui, H., Liu, P. & Yang, G.W. (2007). Shape-induced ultraviolet absorption of CuO shuttlelike nanoparticles. Appl. Phys. Lett. 90, 18311811831183.CrossRefGoogle Scholar
Cui, H., Liu, P. & Yang, G.W. (2006). Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced Raman scattering. Appl. Phys. Lett. 89, 15312411531243.Google Scholar
Diedrich, J., Rehse, S.J. & Palchaudhuri, S. (2007). Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy, Appl. Phys. Lett. 90, 1639011–1639011.Google Scholar
Fang, X. & Ahmad, S.R. (2007). Saturation effect at high laser pulse energies in laser-induced breakdown spectroscopy for elemental analysis in water. Laser Part. Beams 25, 613620.Google Scholar
Gilmore, F.R. (1952). The growth or collapse of a spherical bubble in a viscous compressible liquid. CA. Inst. Techn. Repub. 26, 4.Google Scholar
Hickling, R. & Plesset, M.S. (1964). Collapse and rebound of a spherical bubble in water. Phys. Fluids 7, 714.Google Scholar
Lee, J., Kim, D. & Kang, W. (2006). Preparation of Cu nanoparticles from Cu powder dispersed in 2-propanol by laser ablation. Bull. Korean Chem. Soc. 27, 18691872.Google Scholar
Mafune, F., Kohno, J., Takeda, Y., Kondow, T. & Sawabe, H. (2000). Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B 104, 91119117.Google Scholar
Michel, A.P.M., Farr, N.E. & Chave, A.D. (2006). Evaluation of laser-induced breakdown spectroscopy(LIBS) as a new in situ chemical sensing technique for the deep ocean, Proc. IEEE, Oceans 2006, 15.Google Scholar
Ozaki, T., Bom, L.B.E., Ganeev, R., Kieffer, J.C., Suzuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321325.CrossRefGoogle Scholar
Palanker, D., Turovets, I. & Lewis, A. (1997). Dynamics of ArF excimer laser-induced cavitation bubbles in gel surrounded by a liquid medium. Lasers Surgery & Medicine 21, 294300.Google Scholar
Puliafito, C.A. & Steinert, R.F. (1984). Short-pulsed Nd:YAG laser microsurgery of the eye:biophysical consideration. IEEE J.QE 20, 14421448.Google Scholar
Rai, V.N., Yueh, F. & Singh, J.P. (2003). Study of laser-induced breakdown emission from liquid under double-pulse excitation. App. Opt. 42, 20942101.Google Scholar
Ramanathan, D. & Molian, P.A. (2001). Laser micromachinig using liquid optics. Appl. Phys. Lett. 78, 14841486.CrossRefGoogle Scholar
Rayleigh, L. (1917). On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Magazine 34, 9498.Google Scholar
Samek, O., Telle, H.H. & Beddows, D.C.S. (2001). Laser-induced breakdown spectroscopy: A tool for real-time, in vitro and in vivo identification of carious teeth. BMC Oral Health 1, 19.CrossRefGoogle ScholarPubMed
Schade, W., Bohling, C., Hohmann, K. & Scheel, D. (2006). Laser-induced plasma spectroscopy for mine detection and verification. Laser Part. Beams 24, 241247.Google Scholar
Shangguan, H., Casperson, L.W., Shearin, A., Paisley, D. & Prahl, S.A. (1997). Effects of material properties on laser-induced bubble formation in absorbing liquids and on submerged target. Proc. SPIE 2869, 783791.CrossRefGoogle Scholar
Thareja, R.K. & Shukla, S. (2007). Syntheisis and characterization of zinc oxide nanoparticles by laser ablation of zinc in liquid. Appl. Surf. Scie. 253, 88898895.Google Scholar
Vogel, A., Schweiger, P., Frieser, A., Asiyo, M.N. & Birngruber, R. (1990). Intraocular Nd:YAG laser surgery: Light-tissue interaction, damage range, and reduction of collateral effects. IEEE J.QE 26, 22402260.Google Scholar
Vogel, A., Engelhardt, R., Behnle, U. & Parlitz, U. (1996). Minimisation of cavitation effects in pulsed laser ablation illustrated on laser angioplasty. Appl. Phys. B 62, 173182.CrossRefGoogle Scholar
Vogel, A., Nahen, K., Theisen, D. & Noack, J. (1996). Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses-Part I: Optical breakdown at threshold and superthreshold irradiance. IEEE J. Quan. Elecron. 2, 847860.Google Scholar
Venugopalan, V., Guerra III, A., Nahen, K. & Vogel, A. (2002). Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation. Phys. Rev. Lett. 88, 07810310781034.CrossRefGoogle ScholarPubMed
Veiko, V.P., Shakhno, E.A., Smirnov, V.N., Miaskovski, A.M. & Nikishin, G.D. (2006). Laser-induced film deposition by LIFT: Physical mechanisms and applications. Laser Part. Beams 24, 203209.Google Scholar
Wieger, V., Strassl, M. & Wintner, E. (2006). Pico- and microsecond laser ablation of dental restorative materials. Laser Part. Beams 24, 4145.Google Scholar
Wolowski, J., Badziak, J., Czarnecka, A., Parys, P., Pisarek, M., Rosinski, M., Turan, R., & Yerci, S. (2007). Application of pulsed laser deposition and laser-induced ion implantation for formation of semiconductor nano-crystallites. Laser Part. Beams 25, 6569.Google Scholar