Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T02:23:42.257Z Has data issue: false hasContentIssue false

Microwave excitation and applications of an elliptical excimer lamp

Published online by Cambridge University Press:  09 March 2009

Ziming He
Affiliation:
University of Missouri, Columbia, MO 65211, USA
Mark A. Prelas
Affiliation:
University of Missouri, Columbia, MO 65211, USA
Jon M. Meese
Affiliation:
University of Missouri, Columbia, MO 65211, USA
Li-Te Lin
Affiliation:
University of Missouri, Columbia, MO 65211, USA

Abstract

The concept and experimental results of a microwave-excited elliptical excimer lamp are presented in this paper. The plasma excimer photons are excited at one focus, and the absorber is placed at the second focus. Two elliptical microwave cavities with different eccentricities were tested to study the excitation and characteristics of such an elliptical excimer lamp. The results show that it can be a high-efficiency, narrow-band incoherent vacuum–ultraviolet (VUV)-to-near-infrared photon source. The potential applications of such an excimer lamp, especially with tunable vibronic solid-state and diamond thin film growth, are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agdur, B. & Enander, B. 1962 J. Appl. Phys. 33, 575.CrossRefGoogle Scholar
Asmussen, J.J. 1974 Proc. IEEE 62, 109.Google Scholar
Asmussen, J.J. 1989 J. Vac. Sci. Technol. A7, 883.Google Scholar
Asmusse, J.J. 1991 Personal communication.Google Scholar
Cherrington, B.E. 1979. Gaseous Electronics and Gas Lasers (Pergamon Press, Oxford).Google Scholar
Chu, L.J. 1938 J. Appl. Phys. 9, 583.Google Scholar
Deshpandey, C.V. & Bunshah, R.F. 1989 J. Vac. Sci. Technol. A7, 2294.Google Scholar
He, Z. 1994 Ph.D. dissertation, University of Missouri-Columbia.Google Scholar
He, Z. 1995 M.S. thesis, University of Missouri-Columbia.Google Scholar
Hecht, J. 1992 The Laser Guidebook, 2nd ed. (McGraw-Hill: New York).Google Scholar
Koecfwer, W. 1976 Solid-State Laser Engineering (Springer-Verlag, New York).Google Scholar
Kogelschatz, U. 1990 Pure Appl. Chem. 62.CrossRefGoogle Scholar
Kretzschmar, J.G. 1970 IEEE Trans. Microwave Theory and Techniques MTT-18, 547.CrossRefGoogle Scholar
Kretzschmar, J.G. 1972 J. Microwave Power 7, 35.Google Scholar
Lin, L.T. et al. 1995 Laser Part. Beams 13, p. 95.CrossRefGoogle Scholar
Luh, W. et al. 1978 J. Chem. Phys. 88, 2235.Google Scholar
Maclachlan, N.W. 1964 Theory and Applications ofMetheiu Functions (Dover, New York).Google Scholar
Offermanns, S. 1990 IEEE Trans. Microwave Theory Technol. 38, 904.CrossRefGoogle Scholar
Passow, M.L. et al. 1991 IEEE Trans. Plasma Sci. 19, 219.Google Scholar
Platzmann, R.L. 1961 Int. Appl. Rad. Isotopes 10, 116.CrossRefGoogle Scholar
Prelas, M.A. et al. 1988 Laser Part. Beams, 6, p. 25.Google Scholar
Prelas, M.A. 1992 Personal communication, University of Missouri-Columbia.Google Scholar
Rengarajan, S.R. & Lewis, J.E. 1980 J. Microwave Power 15, 53.Google Scholar
Roumeliotis, J.A. & Savaidis, S.P. 1994 IEEE Trans. Microwave Theory and Technol. 42, 2128.Google Scholar