Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T23:20:10.879Z Has data issue: false hasContentIssue false

Miniature magnetic bottle confined by circularly polarized laser light

Published online by Cambridge University Press:  09 March 2009

E. Kolka
Affiliation:
Plasma Physics, Soreq Nuclear Research Center, Yavne 70600, Israel
S. Eliezer
Affiliation:
Plasma Physics, Soreq Nuclear Research Center, Yavne 70600, Israel
Y. Paiss
Affiliation:
Plasma Physics, Soreq Nuclear Research Center, Yavne 70600, Israel

Abstract

A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss. In this configuration the circularly polarized laser light is used to obtain confinement of a plasma contained in a good conductor vessel. The poloidal magnetic field induced by the circularly polarized laser and the efficiency of laser absorption by the plasma are calculated. The confinement in this scheme is supported by the magnetic forces. The Lawson criterion for a DT plasma might be achieved for number density n = 5.1021 cm-3 and confinement time τ = 20 ns. The laser and plasma parameters required to obtain an energetic gain are calculated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Colombant, D.G. & Winsor, N.K. 1977 Phys. Rev. Lett. 38, 697.CrossRefGoogle Scholar
Daido, H. et al. 1986 Phys. Rev. Lett. 56, 846.CrossRefGoogle Scholar
Dragila, R. 1987 Phys. Fluids 30, 925.CrossRefGoogle Scholar
Eliezer, S. et al. 1986 An Introduction to Equations of State: Theory and Applications (Cambridge Univ. Press, Cambridge).Google Scholar
Eliezer, S. et al. 1992 Phys. Lett. A 164, 416.CrossRefGoogle Scholar
Fabro, R. et al. 1985 Phys. Fluids 28, 1463.CrossRefGoogle Scholar
Hasegawa, A. et al. 1988 Nucl. Fusion 28, 369.CrossRefGoogle Scholar
Hasegawa, A. 1985 Rev. Laser Eng. 13, 53.CrossRefGoogle Scholar
Kammash, T. & Galbraith, D.L. 1989 Nucl. Fusion 29, 1079.CrossRefGoogle Scholar
Kolka, E. et al. 1993 Phys. Lett. A 180, 132.CrossRefGoogle Scholar
London, R.A. & Rosen, M.D. 1986 Phys. Fluids 29, 3813.CrossRefGoogle Scholar
McQueen, R.G. 1991 High-Pressure Equations of State: Theory and Applications, Eliezer, S. and Ricci, R.A, eds. (North Holland, Amsterdam), p. 101.Google Scholar
Mora, P. & Pellat, R. 1981 Phys. Fluids 24, 2219.CrossRefGoogle Scholar
Raven, A. et al. 1978 Phys. Rev. Lett. 41, 554.CrossRefGoogle Scholar
Stamper, J.A. et al. 1978 Phys. Rev. Lett. 40, 1177.CrossRefGoogle Scholar
Strauss, H.R. et al. 1992 Laser Introduction and Related Plasma Phenomena, Miley, G.H. and Hora, H., eds. (Plenum, New York), Vol. 10, p. 167.CrossRefGoogle Scholar
Yamanaka, C. 1991 Introduction to Laser Fusion (Harwood Academic Pub., London), p. 74.Google Scholar
Zigler, A. et al. 1987 Phys. Rev. A 35, 4446.CrossRefGoogle Scholar