Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T22:16:47.620Z Has data issue: false hasContentIssue false

A multigroup radiation analysis of the light ion beam energy conversion into X rays

Published online by Cambridge University Press:  09 March 2009

J. J. Honrubia
Affiliation:
Institute de Fusión Nuclear (DENIM), José Gutiérrez Abascal, 2, 28006-Madrid, Spain

Abstract

Recently, we have developed a one-dimensional radiation-hydrodynamics code called SARA that implicitly solves the multigroup radiation transport equations. A high-order differencing algorithm as well as multifrequency-grey synthetic acceleration techniques are used to obtain a robust algorithm that can be extensively used for radiation energy transport problems and radiative regimes.

The major goal of writing this code has been to explore the performance of the indirectdrive light ion beam capsules. Numerical results show that the efficiency of the energy conversion into soft X rays and the power flux amplification factor are high enough to efficiently compress the fuel capsule for a wide range of ion beam parameters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcouffe, R. E., Clark, B. A. & Larsen, E. W. 1985 in Multiple Time Scales edited by Brackbill, J. V. and Cohen, B. (Academic Press, Orlando, FL), p. 73.Google Scholar
Axelrod, T. S.Dubois, P. F. & Rhoades, C. E. Jr., 1983 Lawrence Livermore National Laboratory, Report Number UCRL-89012.Google Scholar
Honrubia, J. J. & Aragones, J. M. 1986 Nucl. Sci. Eng. 93, 386.Google Scholar
Honrubia, J. J. & Morel, J. E. 1987 International Topical Meeting on Advances in Reactor Physics, Mathematics and Computation 1, 277.Google Scholar
Honrubia, J. J. 1989 in Laser Interaction with Matter, Edited by Velarde, G., Minguez, E. and Perlado, J. M. (World Scientific, Singapore).Google Scholar
Larsen, E. W. 1986 Nucl. Sci. Eng. 92, 98.CrossRefGoogle Scholar
Larsen, E. W., Morel, J. E. & Miller, W. F. Jr. 1987 J. Comput. Phys. 69, 2.Google Scholar
Lorence, L. J. Jr., Larsen, E. W. & Morel, J. E. 1986 Trans. Am.Nucl. Soc. 52, 47.Google Scholar
Lund, C. M. & Wilson, J. R. 1980 Lawrence Livermore National Laboratory, Report Number UCRL-84678.Google Scholar
Mínguez, E. & Gamez, M. L. 1989 Laser and Particle Beams (this issue).Google Scholar
Morel, J. E., Larsen, E. W. & Matzen, M. K. 1985 J. Quant. Spectrosc. Radiat. Transfer 34, 3.Google Scholar
Perlado, J. M. 1987 private communication.Google Scholar
Unterseer, K. & Meyer-Ter-Vehn, J. 1984 Jpn. J. Appl. Phys. 23, 9.CrossRefGoogle Scholar
Velarde, G. et al. 1986 Laser and Particle Beams 4, 349.CrossRefGoogle Scholar
Yabe, T. 1984 Jpn. J. Appl. Phys. 23, 1.CrossRefGoogle Scholar
Yabe, T. 1985 Jpn. J. Appl. Phys. 24, 2.Google Scholar