Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T00:19:55.577Z Has data issue: false hasContentIssue false

Nano-structuring of solid surface by extreme ultraviolet Ar8+ laser

Published online by Cambridge University Press:  30 December 2011

K. Kolacek*
Affiliation:
Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
J. Straus
Affiliation:
Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
J. Schmidt
Affiliation:
Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
O. Frolov
Affiliation:
Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
V. Prukner
Affiliation:
Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
A. Shukurov
Affiliation:
Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
V. Holy
Affiliation:
Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
J. Sobota
Affiliation:
Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Brno, Czech Republic
T. Fort
Affiliation:
Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Brno, Czech Republic
*
Address correspondence and request for reprint to: Karel Kolacek, Institute of Plasma Physics, Academy of Sciences of the Czech Republic, v.v.i., Za Slovankou 1782/3, 182 00 Prague 8, Czech Republic. E-mail: kolacek@ipp.cas.cz

Abstract

This work demonstrates the patterning of polymethylmethacrylate (PMMA) by ablation with Ar8+ ion laser (λ = 46.9 nm) pumped by pulse, high-current, capillary-discharge. For focusing a long-focal spherical mirror (R = 2100 mm) covered by 14 double-layer Sc-Si coating was used. The ablated focal spots demonstrate not only that the energy of our laser is sufficient for such experiments, but also that the design of focusing optics must be more sophisticated: severe aberrations were revealed — an irregular spot shape and strong astigmatism with astigmatic difference as large as 16 mm. In some cases, on the bottom of ablated spots a laser-induced periodic surface structure appeared. Finally, an illumination of the sample through quadratic hole 7.5 × 7.5 µm, standing in contact with PMMA substrate ablated from the surface a strongly developed two-dimensional diffraction pattern (period in the center about 125 nm).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, C.N. & Naulleau, P.P. (2009). Do not always blame the photons. Relationship between deprotection blur, line-edge roughness, and shot noise in extreme ultraviolet photoresists. J. Vac. Sci. Techn. B 27, 665670.CrossRefGoogle ScholarPubMed
Baumberg, J.J., Kelf, T.A., Sugawara, Y., Cintra, S., Abdelsalam, M.E., Bartlett, P.N. & Russell, A.E. (2005). Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals. Nano Lett. 5, 22622267.CrossRefGoogle ScholarPubMed
Campbell, M., Sharp, D.N., Harrison, M.T., Denning, R.G. & Turberfield, A.J. (2000). Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nat. 404, 5356.CrossRefGoogle ScholarPubMed
Chalupsky, J., Juha, L., Hajkova, V., Cihelka, J., Vysin, L., Gautier, J., Hajdu, J., Hau-Riege, S.P., Jurek, M., Krzywinski, J., London, R.A., Papalazarou, E., Pelka, J.B., Rey, G., Sebban, S., Sobierajski, R., Stojanovic, N., Tiedtke, K., Toleikis, S., Tschentscher, T., Valentin, C., Wabnitz, H. & Zeitoun, P. (2009). Non-thermal desorption/ablation of molecular solids induced by ultra-short soft x-ray pulses. Opt. Exp.17, 208217.CrossRefGoogle ScholarPubMed
Chou, S.Y. & Krauss, P.R. (1996). 65 Gbits/in2 quantum magnetic disk. J. Appl. Phys. 79, 5066–5066.CrossRefGoogle Scholar
Disco, C. & van der Meulen, B. (1998). Getting New Technologies Together: Studies in Making Sociotechnical Order. New York: Walter de Gruyter.CrossRefGoogle Scholar
Fan, W.J., Zhang, S., Malloy, K.J. & Brueck, S.R.J. (2005). Large-area, infrared nanophotonic materials fabricated using interferometric lithography. J. Vac. Sci. Techn. B 23, 27002704.CrossRefGoogle Scholar
Fernandez-Perea, M., Larruquert, J.I., Aznarez, J.A., Mendez, J.A., Poletto, L., Malvezzi, A.M., Giglia, A. & Nannarone, S. (2006). Determination of optical constants of scandium films in the 20-1000 eV range. J. Opt. Soc. Am. A 23, 28802887.CrossRefGoogle ScholarPubMed
Freebody, M. (2011). Preserving Moore's law pushes lithography to its limits. Photon.Spec. 45, 5, 4547.Google Scholar
Fuller, S.H. & Millett, L.I., eds. (2010). The future of computing performance: Game over or next level? http://bit.ly/eR0e0A.Google Scholar
Hecht, J. (2011). Photonic integration may boost computing performance. Laser Focus World 47, 5760.Google Scholar
Heyderman, L.J., Solak, H.H., David, C., Atkinson, D., Cowburn, R.P. & Nolting, F. (2004). Arrays of nanoscale magnetic dots: Fabrication by X-ray interference lithography and characterization. Appl. Phys. Lett. 85, 49894991.CrossRefGoogle Scholar
Hill, M.T. (2009). Nanophotonics: Lasers go beyond diffraction limit. Nat. Nanotechn. 4, 706707.CrossRefGoogle ScholarPubMed
Hoffnagle, J.J., Hinsberg, W.D., Sanchez, M. & Houle, F.A. (1999). Liquid immersion deep-ultraviolet interferometric lithography. J. Vac. Sci.Techn. B 17, 33063309.CrossRefGoogle Scholar
Hoffnagle, J.A., Hinsberg, W.D., Houle, F.A. & Sanchez, M.I. (2003). Use of interferometric lithography to characterize the spatial resolution of a photoresist film. J. Photopoly. Sci. Techn. 16, 373379.CrossRefGoogle Scholar
Inogamov, N.A., Anisimov, S.I., Petrov, Yu.V., Khokhlov, V.A., Zhakhovski, V.V., Faenov, A.Ya., Pikuz, T.A., Fortov, V.E., Skobelev, I.Yu., Kato, Y., Shepelev, V.V., Fukuda, Y., Tanaka, M., Ishino, M., Nishikino, M., Kando, M., Kawachi, T., Kishimoto, M., Nagasono, M., Tano, K., Ishikawa, T., Ohashi, N., Yabashi, M., Togashi, T. & Senda, Y. (2011). Ablation of insulators under the action of short pulses of X-ray plasma lasers and free-electron lasers. J. Opt. Techn. 78, 473480.CrossRefGoogle Scholar
Juha, L., Bittner, M., Chvostova, D., Krasa, J., Otcenasek, Z., Prag, A.R., Ullschmied, J., Pientka, Z., Krzywinski, J., Pelka, J.B., Wawro, A., Grisham, M.E., Vaschenko, G., Menoni, C.S. & Rocca, J.J. (2005 a). Ablation of organic polymers by 46.9-nm-laser radiation. Appl. Phys. Lett. 86, 034109.CrossRefGoogle Scholar
Juha, L., Bittner, M., Chvostova, D., Krasa, J., Kozlova, M., Pfeifer, M., Polan, J., Prager, A.R., Rus, B., Stupka, M., Feldhaus, J., Letal, V., Otcenasek, Z., Krzywinski, J., Nietubyc, R., Pelka, J.B., Andrejczuk, A., Sobierajski, R., Ryc, L., Boody, F.P., Fiedorowicz, H., Bartnik, A., Mikolajczyk, J., Rakowski, R., Kubat, P., Pina, L., Horvath, M., Grisham, M.E., Vaschenko, G.O., Menoni, C.S. & Rocca, J.J. (2005 b). Short-wavelength ablation of molecular solids: pulse duration and wavelength effects. J. Microlitho., Microfab.Microsys. 4, 033007.Google Scholar
Klimov, V.V. (2009). Nanoplasmonics. Fizmatlit: Moskva (in Russian).Google Scholar
Kolacek, K., Schmidt, J., Bohacek, V., Ripa, M., Frolov, O., Vrba, P., Straus, J., Rupasov, A.A. & Shikanov, A.S. (2008 a). Amplification of spontaneous emission of neon-like argon in a fast gas-filled capillary discharge. Plasma Phys. Rprt 34, 162168.CrossRefGoogle Scholar
Kolacek, K., Schmidt, J., Prukner, V., Frolov, O. & Straus, J. (2008 b). Ways to discharge-based soft X-ray lasers with the wavelength λ < 15 nm. Laser Part. Beams 26, 167178.CrossRefGoogle Scholar
Kolacek, K., Prukner, V., Schmidt, J., Frolov, O. & Straus, J. (2010). A potential environment for lasing below 15 nm initiated by exploding wire in water. Laser Part. Beams 28, 6167.CrossRefGoogle Scholar
Maier, S.A. (2007). Plasmonics: Fundamentals and Applications. New York: Springer Science + Business Media LLC.CrossRefGoogle Scholar
Mancoff, F.B., Rizzo, N.D., Engel, B.N. & Tehrani, S. (2005). Phase-locking in double-point-contact spin-transfer devices. Nat. 437, 393395.CrossRefGoogle ScholarPubMed
Mocek, T., Rus, B., Stupka, M., Kozlova, M., Prag, A.R. & Polan, J. (2006). Focusing a multimilijoule soft x-ray laser at 21 nm. Appl. Phys. Lett. 89, 051501.CrossRefGoogle Scholar
Moore, G.E. (1975). Progress in digital integrated electronics. Electron Devices Meeting, 11–13.Google Scholar
Moore, G.E. (1965). Cramming more components onto integrated circuits. The experts look ahead. Electron. 38, 8.Google Scholar
Naulleau, P.P., Anderson, C.N., Chiu, J., Dean, K., Denham, P., George, S., Goldberg, K.A., Hoef, B., Jones, G., Koh, C., La Fontaine, B., Ma, A., Montgomery, W., Niakoula, D., Park, J.O., Wallow, T. & Wurm, S. (2009). Latest results from the SEMATECH Berkeley extreme ultraviolet microfield exposure tool. J. Vac. Sci. Techn. B 27, 6670.CrossRefGoogle Scholar
Nielsen, J., Jankowski, A., Friedman, L. & Walton, C.C. (2004). Developing multi-layer mirror technology near 45 nm using Sc/Si interfaces. Report UCRL-TR-202362. Livermore, CA: Lawrence Livermore National Laboratory.CrossRefGoogle Scholar
Noginov, M.A., Zhu, G., Belgrave, A.M., Bakker, R., Shalaev, V.M., Narimanov, E.E., Stout, S., Herz, E., Suteewong, T. & Wiesnar, U. (2009). Demonstration of spacer-based nanolaser. Nat. 460, 11101112.CrossRefGoogle Scholar
Palik, E.D. (1985). Handbook of Optical Constants of Solids. New York: Academic Press.Google Scholar
Pelletier, V., Asakawa, K., Wu, M.S., Adamson, D.H., Register, R.A. & Chaikin, P.M. (2008). Aluminum nanowire polarizing grids: Fabrication and analysis. Appl. Phys. Lett. 88, 211114.Google Scholar
Schmidt, J., Kolacek, K., Straus, J., Prukner, V., Frolov, O. & Bohacek, V. (2005). Soft X-ray emission of fast-capillary-discharge device. Plasma Devices Operat. 13, 105109.CrossRefGoogle Scholar
Schuller, J.A., Barnard, E.S., Cai, W.S., Jun, Y.C., White, J.S. & Brongersma, M.L. (2010). Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193204.CrossRefGoogle ScholarPubMed
Scime, E.E., Anderson, E.H., McComas, D.J. & Schattenburg, M.L. (1995). Extreme-ultraviolet polarization and filtering with gold transmission gratings. Appl. Opt. 34, 648654.CrossRefGoogle ScholarPubMed
Sipe, J.E., Young, J.F., Preston, J.S. & Vandriel, H.M. (1983). Laser-induced periodic surface structure. 1. Theory. Phys. Rev. B 27, 11411154.CrossRefGoogle Scholar
Uspenskii, Y.A., Seely, J.F., Popov, N.L., Vinogradov, A.V., Pershin, Y.P. & Kondratenko, V.V. (2004). Efficient method for determination of extreme-ultraviolet optical constants in reactive materials: application to scandium and titanium. J. Opt. Soc. Am. A 21, 298305.CrossRefGoogle ScholarPubMed
Vinogradov, A.V. (2002). Multilayer X-ray optics. Quan.Electron.32, 11131121.CrossRefGoogle Scholar
Wu, W., Bonakdar, A. & Mohseni, H. (2010). Plasmonic enhanced quantum well infrared photodetector with high detectivity. Appl. Phys. Lett. 96, 161107.CrossRefGoogle Scholar
Young, J.F., Preston, J.S., Vandriel, H.M. & Sipe, J.E. (1983). Laser-induced periodic surface structure. 2. Experiments on Ge, Si, Al, and brass. Phys. Rev. B 27, 11551172.CrossRefGoogle Scholar
Young, J.F., Sipe, J.E. & Vandriel, H.M. (1984). Laser-induced periodic surface structure. 3. Fluence regimes, the role of feedback, and details of the induced topography in germanium. Phys. Rev. B 30, 20012015.CrossRefGoogle Scholar
Zouhdi, S. & Sihvola, A. (2009). Metamaterials and Plasmonics: Fundamentals, Modelling, Applications. Proc. of the NATO Advanced Research Workshop on Metamaterials for Secure Information and Communication Technologies, Marrakech, Morocco, 7-10 May 2008, Springer Science + Business media B.V., Dordrecht (The Netherlands).CrossRefGoogle Scholar