Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T07:45:04.431Z Has data issue: false hasContentIssue false

Numerical study of ion acceleration and plasma jet formation in the interaction of an intense laser beam normally incident on an overdense plasma

Published online by Cambridge University Press:  11 July 2011

M. Shoucri*
Affiliation:
Institut de Recherche d'Hydro-Québec (IREQ), Varennes, Québec, Canada
X. Lavocat-Dubuis
Affiliation:
INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec, Canada
J.-P. Matte
Affiliation:
INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec, Canada
F. Vidal
Affiliation:
INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec, Canada
*
Address correspondence and reprint requests to: M. Shoucri, Institut de Recherche d'Hydro-Québec (IREQ), Varennes, Québec, CanadaJ3X 1S1. E-mail: shoucri.magdi@ireq.ca

Abstract

We present a numerical study of the acceleration of ions in the interaction of a high intensity circularly polarized laser beam normally incident on an overdense plasma target, and the subsequent formation of neutral plasma ejected toward the rear side of the target. We compare the results obtained from two different numerical codes. We use an Eulerian Vlasov code for the numerical solution of the one-dimensional relativistic Vlasov-Maxwell set of equations, for both electrons and ions, and a particle-in-cell code applied to the same problem. We consider the case when the laser free space wavelength λ0 is greater than the scale length of the jump in the plasma density at the target plasma edge Ledge0 ≫ Ledge), and the ratio of the plasma density to the critical density is such that n/ncr ≫ 1. The ponderomotive pressure due to the incident high-intensity laser radiation pushes the electrons at the target plasma surface, producing a sharp density gradient at the plasma surface, which gives rise to a charge separation. The resulting electric field accelerates the ions that reach a free streaming expansion phase, where they are neutralized by the electrons. A neutral plasma jet is thus ejected toward the rear side of the target. Two cases are studied: In the first case, the laser intensity rises to a maximum and then remains constant, and in the second case, the laser intensity is a Gaussian-shaped pulse. The results show substantial differences in the phase-space structure of the ions and the electrons between these two cases. There is good agreement between the quantitative macroscopic results obtained by the two codes, and good qualitative agreement between the results showing the kinetic details of the phase-space structures. The low noise level of the Eulerian Vlasov code allows a more detailed representation of the phase-space structures associated with this system, especially in the low density regions of the phase-space where ions are accelerated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albright, B.J., Yin, L., Boers, K.J., Hegelich, B.M., Flippo, K.A., Kwan, T.J.T. & Fernandez, J.C. (2007). Relativistic Bunemann instability in the laser breakout afterburner. Phys. Plasmas 14, 094502/1–4.CrossRefGoogle Scholar
Berezinskii, V.S., Bulanov, V.S., Dogiel, V.A., Ginzburg, V.L. & Ptuskin, V.S. (1990). Astrophysics of Cosmic Rays. Amsterdam: Elsevier.Google Scholar
Bergmann, A. & Mulser, P. (1993). Breaking of resonantly excited electron plasma waves. Phys. Rev. E 47, 35853589.CrossRefGoogle ScholarPubMed
Birdsall, C.K. & Langdon, A.B. (1981). Computer Simulation Using Particles. New York: McGraw Hill.Google Scholar
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high-intensity laser matter interaction. Laser Part. Beams 25, 161167.CrossRefGoogle Scholar
Buneman, O. (1959). Dissipation of currents in ionized media. Phys. Rev. 115, 503.CrossRefGoogle Scholar
Cormier-Michel, E., Shadwick, B.A., Geddes, C.G.R., Esarey, E., Schroeder, C.B. & Leemans, W.P. (2008). Unphysical kinetic effects in particle-in-cell modeling of laser wakefield acceleratores. Phys. Rev. E 78, 016404.CrossRefGoogle Scholar
Denavit, J. (1992). Absorption of high intensity subpicosecond lasers on solid density targets. Phys. Rev. Lett. 69, 30523055.CrossRefGoogle ScholarPubMed
Fernandez, J.C., Honrubia, J.J., Albright, B.J., Flippo, K.A., Gautier, D.C., Hegelich, B.M., Schmitt, M.J., Temporal, M. & Yin, L. (2009). Progress and prospects of ion-driven fast ignition. Nucl. Fusion 49, 065004/1–8.CrossRefGoogle Scholar
Gibbon, P. & Bell, A.R. (1992). Collisionless absorption in sharp-edged plasmas. Phys. Rev. Lett. 68, 1535.CrossRefGoogle ScholarPubMed
Guérin, S., Mora, P., Adam, J-C., Héron, A. & Laval, G. (1996). Propagation of ultraintense laser pulses trough overdense plasma layers. Phys. Plasmas 3, 26932701.CrossRefGoogle Scholar
Kar, S., Borghesi, M., Bulanov, S.V., Key, M.H., Lyseikina, T.V., Macchi, A., Mackinnon, A.J., Patel, P.K., Romagnani, L., Schiavi, A. & O. Willi, O. (2008). Plasma jets driven by ultraintense-laser interaction with thin foils. Phys. Rev. Lett. 100, 225004/1–4.CrossRefGoogle ScholarPubMed
Kasperczuk, A., Pisarczyk, T., Badziak, J., Borodziuk, S., Chodukowski, T., Parys, P., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2010). Interaction of two plasma jets produced successively from Cu target. Laser Part. Beams 28, 497504.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Demchenko, N.N., Gus'kov, S., Yu., , Kalal, M.,Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2009 b). Experimental and theoretical investigations of mechanisms responsible for plasma jets formation at PALS. Laser Part. Beams 27, 415427.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Nicolai, P.H., Stenz, C.H., Tikhonchuk, V., Kalal, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J., Klir, D., Kravarik, J., Kubes, P. & Pisarczyk, P. (2009 a). Investigations of plasma jet interaction with ambient gases by multi-frame interferometric and X-ray pinhole camera systems. Laser Part. Beams 27, 115122.CrossRefGoogle Scholar
Klimo, O., Psikal, J., Limpouch, J. & Tikhonchuk, V.T. (2008). Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys. Rev. Special Topics- Accel. Beams 11, 031301/1–14.Google Scholar
Lavocat-Dubuis, X., Vidal, F., Matte, J.-P., Popovici, C., Ozaki, T. & Kieffer, J.-C. (2011). Effects of chirp and pulse shape on high harmonic generation and absorption in overdense plasmas. Accepted for publication, Laser Part. Beams 29, 95104.CrossRefGoogle Scholar
Liseykina, T.V., Borghesi, M., Macchi, A. & Tuveri, S. (2008). Radiation pressure acceleration by ultraintense laser pulses. Plasmas Phys. Contr. Fusion 50, 124033/1–9.Google Scholar
Liu, Bin, Zhang, Hua, Fu, Li-Bin, Gu, Yu-Qiu, Zhang, Bao-Han, Liu, Ming-Ping, Xie, Bai-Song, Liu, Jie & He, Xan-Tu. (2010). Ion jet generation in the ultraintense laser interactions with rear-side concave target. Laser Part. Beams 28, 351359.CrossRefGoogle Scholar
Macchi, A., Cattani, F., Liseykina, T.V. & Cornolti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003/1–4.CrossRefGoogle ScholarPubMed
Mendonça, J.T., Norreys, P., Bingham, R. & Davies, J.R. (2005a). A coupled two-step plasma instability in PW laser plasma interactions. Plasma Phys. Contr. Fusion 47, B799–B805.CrossRefGoogle Scholar
Mendonça, J.T., Norreys, P., Bingham, R. & Davies, J.R. (2005 b). Beam instabilities in laser-plasma interaction: Relevance to preferential ion heating. Phys. Rev. Lett. 94, 245002/1–4.CrossRefGoogle Scholar
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys.78, 309371.CrossRefGoogle Scholar
Robinson, A.P.L., Gibbon, P., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2009). Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses. Plasma Phys. Contr. Fusion 51, 024004/1–14.CrossRefGoogle Scholar
Robinson, A.P.L., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure of thin foils with circularly polarized laser pulses. New J. Phys.10, 013021/1–13.CrossRefGoogle Scholar
Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., McCanny, T., Mora, P., Neely, D., Wahlström, C.-G., Zepf, M. & McKenna, P. (2007). Scaling of proton acceleration driven by petawatt laser-plasma interactions. Nature Phys. 3, 5862.CrossRefGoogle Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M, Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.CrossRefGoogle Scholar
Schlegel, T., Naumova, N., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses. Phys. Plasmas 16, 083103/1–16.CrossRefGoogle Scholar
Shoucri, M. (2008 a). Numerical Solution of Hyperbolic Differential Equations. New York: Nova Science Publishers.Google Scholar
Shoucri, M. (2008 b). Numerical simulation of wake-field acceleration using an Eulerian Vlasov code. Comm. Comp. Phys. 4, 703718.Google Scholar
Shoucri, M. (2008 c). Eulerian codes for the numerical solution of the Vlasov equation. Comm. Nonl. Sci. Num. Simul. 13, 174182.CrossRefGoogle Scholar
Shoucri, M. (2009). The application of the method of characteristics for the numerical solution of hyperbolic differential equations. In Numerical Simulation Research Progress (Colombo, Simone P., et al. , Eds.), p. 198. New-York: Nova Science Publishers.Google Scholar
Shoucri, M. (2010). Numerical solution of the relativistic Vlasov-Maxwell equations for the study of the interaction of a high intensity laser beam normally incident on an overdense plasma. In: Eulerian Codes For The Numerical Solution Of The Kinetic Equations Of Plasmas (Shoucri, M., Ed.), p. 163236. New York: Nova Science Publishers.Google Scholar
Shoucri, M. & Afeyan, B. (2010). Studies of the interaction of an intense laser beam normally incident on an overdense plasma. Laser Part. Beams 28, 129147.CrossRefGoogle Scholar
Shoucri, M., Afeyan, B. & Charbonneau-Lefort, M. (2008). Numerical simulation for ion acceleration in an intense laser wave incident on an overdense plasma. J. Phys. D Appl. Phys. 41, 215205/1–9.CrossRefGoogle Scholar
Verluise, F., Laude, V., Cheng, Z., Spielmann, C. & Tournois, P. (2000). Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping, Opt. Lett. 25, 575577.CrossRefGoogle ScholarPubMed
Weiner, A., Oudin, S., Leaird, D. & Reitze, D. (1993). Shaping of femtosecond pulses using phase-only filters designed by simulated annealing. J. Opt. Soc. Am. A 10, 11121120.CrossRefGoogle Scholar
Yang, X.H., Ma, Y.Y., Shao, F.Q., Xu, H., Yu, M.Y., Gu, Y.Q., Yu, T.P., Yin, Y., Tian, C.L. & Kawata, S. (2010). Collimated proton beam generation from ultraintense laser-irradiated hole target. Laser Part. Beams 28, 319325.CrossRefGoogle Scholar