Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T19:50:53.909Z Has data issue: false hasContentIssue false

Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors

Published online by Cambridge University Press:  18 February 2009

H.J. Kong*
Affiliation:
Department of Physics, KAIST, Yuseong-gu, Daejeon, Korea
J.S. Shin
Affiliation:
Department of Physics, KAIST, Yuseong-gu, Daejeon, Korea
J.W. Yoon
Affiliation:
Department of Physics, KAIST, Yuseong-gu, Daejeon, Korea
D.H. Beak
Affiliation:
Department of Physics, KAIST, Yuseong-gu, Daejeon, Korea
*
Address correspondence and reprint requests to: Hong Jin Kong, Department of Physics, KAIST, Department of Physics, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea. E-mail: hjkong@kaist.ac.kr

Abstract

The beam combination method using stimulated Brillouin scattering phase conjugate mirrors (SBS-PCMs) is a promising technique for a high energy and high power laser output operating with a high repetition rate. The two-beam combined system was previously demonstrated with an amplitude dividing method. A four-beam combined laser system with amplitude dividing method is demonstrated in this work, and the phase stabilization experiment of this system is performed using the self phase control and the long-term stabilization technique. The phase differences between the SBS waves are stabilized with λ/30 and the fluctuation of the four-beam combined output energy is 6.16% during 2000 shots (200 s).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127141.Google Scholar
Basov, N.G., Efimkov, V.F., Zubarev, I.G., Kotov, A.V., Mironov, A.B., Mikhaĭov, S.I. & Smirnov, M.G. (1979). Influence of certain radiation parameters on wavefront reversal of a pump wave in a Brillouin mirror. Sov. J. Quan. Electron. 9, 455458.CrossRefGoogle Scholar
Bowers, M.W. & Boyd, R.W. (1998). Phase locking via Brillouin-enhanced four-wave-mixing phase conjugation. IEEE J. Quan. Electron. 34, 634644.CrossRefGoogle Scholar
Boyd, R.W., Rzążewski, K. & Narum, P. (1990). Noise initiation of stimulated Brilloun scattering. Phys. Rev. A 42, 55145521.Google Scholar
Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, I., Fell, B., Frackiewicz, A.J., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2005). Vulcan Petawatt: design, operation and interactions at 5 × 1020 Wcm−2. Laser Part. Beams 23, 8793.CrossRefGoogle Scholar
Hasi, W.L.J., Lu, Z.W., Li, Q. & He, W.M. (2007). Research on the enhancement of power-load of two-cell SBS system by choosing different media or mixture medium. Laser Part. Beams 25, 207210.Google Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.CrossRefGoogle Scholar
Kappe, P., Strasser, A. & Ostermeyer, M. (2007). Investigation of the impact of SBS-parameters and loss modulation on the mode locking of an SBS-laser oscillator. Laser Part. Beams 25, 107116.CrossRefGoogle Scholar
Kong, H.J., Lee, S.K. & Lee, D.W. (2004). Highly repetitive high energy/power beam combination laser: Laser fusion driver using a beam combination with stimulated Brillouin scattering phase conjugation mirrors operating at high repetition rate over 10 Hz. Report of an IAEA Technical Meeting, pp. 2833, Daejeon.Google Scholar
Kong, H.J., Lee, J.Y., Shin, Y.S., Byun, J.O., Park, H.S. & Kim, H. (1997). Beam recombination characteristics in array laser amplification using stimulated Brillouin scattering phase conjugation. Opt. Rev. 4, 277283.Google Scholar
Kong, H.J., Lee, S.K. & Lee, D.W. (2005 a). Beam combined laser fusion driver with high power and high repetition rate using stimulated Brillouin scattering phase conjugation mirrors and self-phase-locking. Laser Part. Beams 23, 5559.CrossRefGoogle Scholar
Kong, H.J., Lee, S.K. & Lee, D.W. (2005 b). Highly repetitive high energy/power beam combination laser: IFE laser driver using independent phase control of stimulated Brillouin scattering phase conjugate mirrors and pre-pulse technique. Laser Part. Beams 23, 107111.CrossRefGoogle Scholar
Kong, H.J., Lee, S.K. & Lee, D.W. (2005 d). Feasibility study of a high power laser system with beam combination method using phase conjugation mirrors of a stimulated Brillouin scattering for generating an ultra high power output with a high repetition rate over 10 Hz. IAEA-TECDOC-1460, pp. 1520, Vienna.Google Scholar
Kong, H.J., Lee, S.K., Lee, D.W. & Guo, H. (2005 c). Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation. Appl. Phys. Lett. 86, 051111.CrossRefGoogle Scholar
Kong, H.J., Lee, S.K., Yoon, J.W. & Beak, D.H. (2006 a). Beam combination using stimulated Brillouin scattering for the ultimate high power-energy laser system operating at high repetition rate over 10 Hz for laser fusion driver. Opt. Rev. 13, 119128.CrossRefGoogle Scholar
Kong, H.J., Shin, Y.S. & Kim, H. (1999). Beam combination characteristics in an array laser using stimulated Brillouin scattering phase conjugate mirrors considering partial coherency between the beams. Fusion Eng. Des. 44, 407417.CrossRefGoogle Scholar
Kong, H.J., Yoon, J.W., Beak, D.H., Shin, J.S., Lee, S.K. & Lee, D.W. (2007). Laser fusion driver using stimulated Brillouin scattering phase conjugate mirrors by a self-density modulation. Laser Part. Beams 25, 225238.CrossRefGoogle Scholar
Kong, H.J., Yoon, J.W., Shin, J.S. & Beak, D.H. (2008). Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors. Appl. Phys. Lett. 92, 021120.Google Scholar
Kong, H.J., Yoon, J.W., Shin, J.S., Beak, D.H. & Lee, B.J. (2006 b). Long term stabilization of the beam combination laser with a phase controlled stimulated Brillouin scattering phase conjugation mirrors for the laser fusion driver. Laser Part. Beams 24, 519523.Google Scholar
Kuehl, T., Ursescu, D., Bagnoud, V., Javorkova, D., Rosmej, O., Cassou, K., Kazamias, S., Klisnick, A., Ros, D., Nickles, P., Zielbauer, B., Dunn, J., Neumayer, P., Pert, G. & Team, P. (2007). Optimization of the non-normal incidence, transient pumped plasma X-ray laser for laser spectroscopy and plasma diagnostics at the facility for antiproton and ion research (FAIR). Laser Part. Beams 25, 9397.Google Scholar
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Gammino, S., Torrisi, L. & Boody, F.P. (2006). Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions. Laser Part. Beams 24, 175179.CrossRefGoogle Scholar
Lee, S.K., Kong, H.J. & Nakatsuka, M. (2005). Great improvement of phase controlling of the entirely independent stimulated Brillouin scattering phase conjugate mirrors by balancing the pump energies. Appl. Phys. Lett. 87, 161109.Google Scholar
Lontano, M., Passoni, M., Riconda, C., Tikhonchuk, V.T. & Weber, S. (2006). Electromagnetic solitary waves in the saturation regime of stimulated Brillouin backscattering. Laser Part. Beams 24, 125129.CrossRefGoogle Scholar
Loree, T.R., Watkins, D.E., Johnson, T.M., Kurnit, N.A. & Fisher, R.A. (1987). Phase locking two beams by means of seeded Brillouin scattering. Opt. Lett. 12, 178180.CrossRefGoogle ScholarPubMed
Nakai, S. & Mima, K. (2004). Laser driven fusion energy: Present and prospective. Rep. Prog. Phys. 67, 321349.Google Scholar
Meister, S., Riesbeck, T. & Eichler, H.J. (2007). Glass fibers for stimulated Brillouin scattering and phase conjugation. Laser Part. Beams 25, 1521.CrossRefGoogle Scholar
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Goette, S., Haefner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H. J., Kuehl, T., Kunzer, S., Merz, T., Onkels, E., Perry, M.D., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschwitz, A., Thiel, R., Ursescu, D., Wiewior, P., Wittrock, U., Zielbauer, B. (2005). Status of PHELIX laser and first experiments. Laser Part. Beams 23, 385389.CrossRefGoogle Scholar
Ostermeyer, M., Kong, H.J., Kovalev, V.I., Harrison, R.G., Fotiadi, A.A., Mégret, P., Kalal, M., Slezak, O., Yoon, J.W., Shin, J.S., Beak, D.H., Lee, S.K., , Z., Wang, S., Lin, D., Knight, J.C., Kotova, N.E., Sträßer, A., Scheikh-Obeid, A., RieTsbeck, T., Meister, S., Eichler, H.J., Wang, Y., He, W., Yoshida, H., Fujita, H., Nakatsuka, M., Hatae, T., Park, H., Lim, C., Omatsu, T., Nawata, K., Shiba, N., Antipov, O.L., Kuznetsov, M.S. & Zakharov, N.G.. (2008). Trends in stimulated Brillouin scattering and optical phase conjugation. Laser Part. Beams 26, 297362.CrossRefGoogle Scholar
Riesbeck, T. & Eichler, H.J. (2007). A high power laser system at 540 nm with beam coupling by second harmonic generation. Opt. Commun. 275, 429432.Google Scholar
Riesbeck, T., Risse, E. & Eichler, H.J. (2001). Pulsed solid-state laser system with fiber phase conjugation and 315 W average output power. Appl. Phys. B 73, 847849.CrossRefGoogle Scholar
Rockwell, D.A. & Giuliano, C.R. (1986). Coherent coupling of laser gain media using phase conjugation. Opt. Lett. 11, 137149.Google Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A., Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.CrossRefGoogle Scholar
Torrisi, L., Margarone, D., Laska, L., Krasa, J., Velyhan, A., Pfeifer, M., Ullschmied, J. & Ryc, L. (2008). Self-focusing effect in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams 26, 379387.CrossRefGoogle Scholar
Valley, M., Lombardi, G. & Aprahamian, R. (1986). Beam combination by stimulated Brillouin scattering. J. Opt. Soc. Am. B 3, 14921497.CrossRefGoogle Scholar
Wang, S.Y., Lu, Z.W., Lin, D.Y., Ding, L. & Jiang, D.B. (2007). Investigation of serial coherent laser beam combination based on Brillouin amplification. Laser Part. Beams 25, 7983.Google Scholar
Yoshida, H., Kmetik, V., Fujita, H., Nakatsuka, M., Yamanaka, T. & Yoshida, K. (1997). Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror. Appl. Opt. 36, 37393744.CrossRefGoogle ScholarPubMed
Yoshida, H., Fujita, H., Nakatsuka, M., Ueda, T. & Fujinoki, A. (2007). Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength. Laser Part. Beams 25, 481488.CrossRefGoogle Scholar