Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T14:27:50.907Z Has data issue: false hasContentIssue false

Plasma formation through field ionization in intense laser–matter interaction

Published online by Cambridge University Press:  25 March 2004

D. BAUER
Affiliation:
Max-Born-Institut, Max-Born-Str. 2a, 12489 Berlin, Germany and Institut für Angewandte Physik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

Abstract

Optical field ionization is the earliest and fastest plasma-generating process during the interaction of intense laser light with matter. By using short and rapidly rising laser pulses, the free electron density may turn from being transparent for an incoming laser pulse to reflective in less than half a laser cycle, that is, on a subfemtosecond timescale. Extremely nonlinear optical effects arise as a consequence of this. In this article, the basics of optical field ionization that are relevant in analytical or numerical studies of intense laser–matter interactions are reviewed. Several macroscopic effects of field ionization in the interaction of intense laser pulses with solid targets are briefly surveyed.

Type
Research Article
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ammosov, M.V., Delone, N.D. & Krainov, V.P. (1986). Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 11911194.Google Scholar
Augst, S., Meyerhofer, D.D., Strickland, D. & Chin, S.L. (1991). Laser ionization of noble gases by Coulomb-barrier suppression. J. Opt. Soc. Am. B 8, 858867.Google Scholar
Backus, S., Kapteyn, H.C., Murnane, M.M., Gold, D.M., Nathel, H. & White, W. (1993). Prepulse suppression for high-energy ultrashort pulses using self-induced plasma shuttering from a fluid target. Opt. Lett. 18, 134136.Google Scholar
Bauer, D. (1997). Ejection energy of photoelectrons in strong-field ionization. Phys. Rev. A 55, 21802185.Google Scholar
Bauer, D. & Mulser, P. (1999). Exact field ionization rates in the barrier-suppression regime from numerical time-dependent Schrödinger-equation calculations. Phys. Rev. A 59, 569577.Google Scholar
Bauer, D., Salomaa, R.R.E. & Mulser, P. (1998). Generation of ultrashort light pulses by a rapidly ionizing thin foil. Phys. Rev. E 58, 24362440.Google Scholar
Becker, A., Plaja, L., Moreno, P., Nurhuda, M. & Faisal, F.H.M. (2001). Total ionization rates and ion yields of atoms at nonperturbative laser intensities. Phys. Rev. A 64, 023408.Google Scholar
Bethe, H.A. & Salpeter, E.E. (1977). Quantum Mechanics of One- and Two-Electron-Atoms. New York: Plenum.
Brabec, Th. & Krausz, F. (2000). Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545591.Google Scholar
Conejero Jarque, E., Cornolti, F. & Macchi, A. (2000). Ultra-short laser-produced optical microcavities and ionization front. J. Phys. B: At. Mol. Opt. Phys. 33, 113.Google Scholar
Conejero Jarque, E. & Plaja, L. (1998). Harmonic filtering in an optically thin laser-generated plasma. Phys. Rev. E 58, 78647867.Google Scholar
Delone, N.B. & Krainov, V.P. (2000). Multiphoton Processes in Atoms. Berlin: Springer.
Faisal, F.H.M. (1987). Theory of Multiphoton Processes. New York: Plenum.
Giulietti, D., Gizzi, L.A., Giulietti, A., Macchi, A., Teychenné, D., Chessa, P., Rousse, A., Cheriaux, G., Chambaret, J.P. & Darpentigny, G. (1997). Observation of solid-density laminar plasma transparency to intense 30 femtosecond laser pulses. Phys. Rev. Lett. 79, 31943197.Google Scholar
Gold, D.M. (1994). Direct measurement of prepulse suppression by use of a plasma shutter. Opt. Lett. 19, 20062008.Google Scholar
Ilkov, F.A., Decker, J.E. & Chin, S.L. (1992). Ionization of atoms in the tunneling regime with experimental evidence using Hg atoms. J. Phys. B: At. Mol. Opt. Phys. 25, 4005.Google Scholar
Kapteyn, H.C., Murnane, M.M., Szöke, A. & Falcone, R.W. (1991). Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering. Opt. Lett. 16, 490.Google Scholar
Keldysh, L.V. (1964). Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 13071314.Google Scholar
Krainov, V.P. (1997). Ionization rates and energy-angular distributions at the barrier-suppression ionization of complex atoms and atomic ions. In Multiphoton Processes 1996 (Lambropoulos, P. and Walther, H., Eds.), Institute of Physics Conf. Proc. No. 154, p. 98. Bristol: IOP.
Landau, L.D. & Lifschitz, E.M. (1977). Quantum Mechanics: Nonrelativistic Theory, 3rd ed. Oxford: Pergamon.
Macchi, A., Conejero Jarque, E., Bauer, D., Cornolti, F. & Plaja, L. (1999). Steady magnetic field generation due to transient field ionization in ultrashort laser-solid interaction. Phys. Rev. E 59, R36R39.Google Scholar
Macchi, A., Cornolti, F. & Pegoraro F. (2003). Rivista del Nuovo Cimento. (In press).
McNaught, S.J., Knauer, J.P. & Meyerhofer, D.D. (1997). Measurement of the initial condition of electrons ionized by a linearly polarized, high-intensity laser. Phys. Rev. Lett. 78, 626629.Google Scholar
Mulser, P., Cornolti, F. & Bauer, D. (1998). Modeling field ionization in an energy conserving form and resulting nonstandard fluid dynamics. Phys. Plasmas 5, 44664475.Google Scholar
Perelomov, A.M., Popov, V.S. & Terent'ev, M.V. (1966). Ionization of atoms in an alternating electric field. Sov. Phys. JETP 23, 924934.Google Scholar
Pitrelli, D., Bauer, D., Macchi, A. & Cornolti, F. (2000). Ionization of the Thomas-Fermi atom in intense laser fields: The static limit revisited. J. Phys. B: At. Mol. Opt. Phys. 33, 829842.Google Scholar
Posthumus, J.H., Thompson, M.R., Frasinski, L.F. & Codling, K. (1997). Molecular dissociative ionization using a classical over-the-barrier approach. In Multiphoton Processes 1996 (Lambropoulos, P. and Walther, H., Eds.), Institute of Physics Conf. Proc. No. 154, p. 298. Bristol: IOP.
Protopapas, M., Keitel, C.H. & Knight, P.L. (1997). Atomic physics with super-high intensity lasers. Rep. Prog. Phys. 60, 389486.Google Scholar
Rae, S.C. & Burnett, K. (1992). Detailed simulation of plasma-induced spectral blueshifting. Phys. Rev. A 46, 10841090.Google Scholar
Reiss, H.R. (1980). Effect of an intense electromagnetic field on a weakly bound system. Phys. Rev. A 22, 17861813.Google Scholar
Scrinzi, A. (2000). Ionization of multielectron atoms by strong static electric fields. Phys. Rev. A 61, 041402(R).Google Scholar
Scrinzi, A., Geissler, M. & Brabec, Th. (1999). Ionization above the Coulomb barrier. Phys. Rev. Lett. 83, 706709.Google Scholar
Teubner, U., Wagner, U. & Förster, E. (2001). Sub-10 fs gating of optical pulses. J. Phys. B: At. Mol. Opt. Phys. 34, 29933002.Google Scholar
Themelis, S.I., Mercouris, Th. & Nicolaides, C.A. (2000). Quantum-mechanical versus semiclassical calculations of dc-field-induced tunneling rates for helium for field strengths in the range 0.067–1.0 a.u. Phys. Rev. A 61, 024101.Google Scholar
Walker, B., Sheehy, B., DiMauro, L.F., Agostini, P., Schafer, K.J. & Kulander, K.C. (1994). Precision measurement of strong field double ionization of helium. Phys. Rev. Lett. 73, 12271230.Google Scholar
Yudin, G.L. & Ivanov, M.Yu. (2001). Nonadiabatic tunnel ionization: Looking inside a laser cycle. Phys. Rev. A 64, 013409.Google Scholar