Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T17:44:53.750Z Has data issue: false hasContentIssue false

Plasma plume behavior of laser ablated cerium oxide: Effect of oxygen partial pressure

Published online by Cambridge University Press:  06 June 2014

Arun Kumar Panda*
Affiliation:
Materials Synthesis and Structural Characterisation Division, Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India
Akash Singh
Affiliation:
Materials Synthesis and Structural Characterisation Division, Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India
Maneesha Mishra
Affiliation:
Materials Synthesis and Structural Characterisation Division, Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India
R. Thirumurugesan
Affiliation:
Materials Synthesis and Structural Characterisation Division, Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India
P. Kuppusami
Affiliation:
Centre for Nanoscience and Nanotechnology, Sathyabama University, Chennai, India
E. Mohandas
Affiliation:
Materials Synthesis and Structural Characterisation Division, Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India
*
Address correspondence and reprint requests to: Arun Kumar Panda, Materials Synthesis and Structural Characterisation Division, Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102, India. E-mail: akpanda@igcar.gov.in

Abstract

This paper describes the spatial and temporal investigation of laser ablated plasma plume of cerium oxide target using Langmuir probe. Cerium oxide target was ablated using a KrF (λ ~ 248 nm) gas laser. Experimental studies confirmed that oxygen partial pressure of 2 × 10−2 mbar is sufficient enough to get good quality films of cerium oxide. At this pressure, plume was diagnosed for their spatial and temporal behavior. Spatial distribution was investigated at a distance of 15 mm, 30 mm, and up to a maximum distance of 45 mm from the target, whereas temporal behavior has been recorded in the range of 0 to 50 µS with an interval of 0.5 µS. The average electron densities are found to be maximum at 30 mm from the target position and the plasma current of the laser ablated ceria is found to be maximum at 22 µS.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J.E., Boyd, R.L.F. & Reynolds, P. (1957). The collection of positive ions by a probe immersed in a plasma. Proc. Phys. Soc. B. 70, 297304.CrossRefGoogle Scholar
Allen, J.E. (1992). Probe theory: The orbital motion approach. Phys. Scripta 45, 497503.CrossRefGoogle Scholar
Balakrishnan, G., Kuppusami, P., Sairam, T.N., Thirumurugesan, R., Mohandas, E. & Sastikumar, D. (2009). Synthesis and properties of ceria thin films prepared by pulsed laser deposition. J. Nanosci. Nanotechnol. 9, 54215424.CrossRefGoogle ScholarPubMed
Balakrishnan, G., Sundari, S.T., Kuppusami, P., Mohan, P.C., Srinivasan, M.P., Mohandas, E., Ganesan, V. & Sastikumar, D. (2011). Study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition. Thin Solid Films 519, 25202526.CrossRefGoogle Scholar
Baron, B., Dubowski, J.J. & Norton, D.P. (1993). Laser ablation in materials processing: Fundamentals and applications. Mater. Res. Soc. Symp. Proc. 285, 501507.Google Scholar
Boyd, R.L.F. & Twiddy, N.D. (1959). Electron energy distributions in plasmas. Intern. Proc. Roy. Soc. 250, 5369.Google Scholar
Boyd, I.W. (1996). Thin film growth by pulsed laser deposition. Ceramics International 22, 429434.CrossRefGoogle Scholar
Caridi, F., Torrisi, L., Margarone, D. & Borrielli, A. (2008). Investigation on low temperature laser-generated plasmas. Lase. Part. Beams 26, 265271.CrossRefGoogle Scholar
Chen, F.F. (1974). Introduction to Plasma Physics. New York: Plenum Press.Google Scholar
Chrisey, D.B. & Hubler, G.K. (1994). Pulsed Laser Deposition of Thin Films. New York: John Wiley & Sons.Google Scholar
Cossarutto, L., Chaoui, N., Millon, E., Muller, J.F., Lambert, J. & Alnot, M. (1998). CeO2 thin films on Si (100) obtained by pulsed laser deposition. Appl. Surf. Sci. 126, 352355.CrossRefGoogle Scholar
Dogar, A.H., Ilyas, B., Ullah, S., Nadeem, A. & Qayyum, A. (2011). Langmuir Probe Measurements of Nd-YAG laser-produced copper plasmas. IEEE Trans. Plasma Sci. 39, 897900.CrossRefGoogle Scholar
Doggett, B. & Lunney, J.G. (2009). Langmuir probe characterization of laser ablation plasmas. J. Appl. Phy. 105, 16.CrossRefGoogle Scholar
Druyvesteyn, M.J. (1930). Der Niedervoltbogen. Z Phys A Hadrn. Nucl. 64, 781798.Google Scholar
Eason, R. (2007). Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials. New Jersey:John Wiley & Sons.Google Scholar
Elidrissi, B., Addou, M., Regragui, M., Monty, C., Bougrine, A. & Kachouane, A. (2000). Structural and optical properties of CeO2 thin films prepared by by spray pyrolysis. Thin Solid Films 379, 2327.CrossRefGoogle Scholar
Hirschauer, B., Chiaia, G., Gothelid, M. & Karlsson, U.O. (1999). Studies of highly oriented CeO2 flms grown on Si(111) by pulsed laser deposition. Thin Solid Films 348, 37.CrossRefGoogle Scholar
Hong, C., Chae, H.B., Lee, S.B., Han, Y.J., Jung, J.H., Cho, B.K. & Park, H. (2000). Langmuir probe measurement of electron density and electron temperature in the early stage of a laser produced carbon plasma. Trans. Electri. Electronic. Matr. 1, 3239.Google Scholar
Hopkins, M.B. (1995). Langmuir probe measurements in the gaseous electronic conference rf reference cell. J. Res. Natl. Inst. Stand. Technol. 100, 415425.CrossRefGoogle ScholarPubMed
Inam, A., Wu, X.D., Venkatesan, T., Ogale, S.B., Chang, C.C. & Dijikamp, D. (1987). Pulsed Laser etching of high Tc superconductor films. Appl. Phys. Lett. 51, 11121114.CrossRefGoogle Scholar
Inoue, T., Ohsuna, T., Luo, L., Wu, X.D., Maggiore, C.J., Yamamoto, Y., Sakurai, Y. & Chang, J.H. (1991). Growth of (110)-oriented CeO2 layers on (100) silicon substrates. Appl. Phys. Lett. 59, 36043606.CrossRefGoogle Scholar
Kanakaraju, S., Mohan, S. & Sood, A.K. (1997). Optical and structural properties of reactive ion beam sputter deposited CeO2 films. Thin Solid Films 305, 191195.CrossRefGoogle Scholar
Klagge, S. & Tichy, M. (1985). A contribution to the assessment of the influence of collisions on the measurements with Langmuir Probes in the thick sheath working regime. Czech. J. Phys. Sect. B. 35, 9881006.CrossRefGoogle Scholar
Kumari, S., Kushwaha, A. & Khare, A. (2012). Spatial distribution of electron temperature and ion density in laser induced ruby (Al2O3:Cr3+) plasma using Langmuir probe. J. Inst. 7, C05017/1–9.Google Scholar
Kuppusami, P., Padhi, S.N., Muthukumaran, K., Mohandas, E. & Raghunathan, V.S. (2005). Pulsed laser deposition of novel oxide materials. Surf. Eng. 21, 172175.CrossRefGoogle Scholar
Laframboise, J.G. (1966). Theory of spherical and cylindrical Langmuir probe in a collision less Maxwellian plasma at rest. Report No.100. University of Toronto.Google Scholar
Lenk, A., Schltrich, B. & Witke, T. (1996). Diagnostics of laser ablation and laser induced plasmas. Appl. Surf. Sci. 106, 473477.CrossRefGoogle Scholar
Li, M.Y., Wang, Z.L., Fan, S.S., Zhao, Q.T. & Xiong, G.C. (1998). Structural characteristics and the control of crystallographic orientation of CeO2 thin films prepared by laser ablation. Nucl. Instrum. Meth. B 135, 535539.CrossRefGoogle Scholar
Luo, Li., Wu, X.D., Dye, R.C., Muenchausen, R.E., Folton, S.R., Coulter, Y.C., Maggiore, J. & Inoue, T. (1991). a-axis oriented YBa2Cu3O7 − x thin films on Si with CeO2 buffer layers. Appl. Phys. Lett. 59, 20432045.CrossRefGoogle Scholar
Merlino, R.L. (2007). Understanding Langmuir probe current-voltage characteristics. Am. J. Phys. 75, 10781085.CrossRefGoogle Scholar
Neifeld, R.A., Gunapala, S., Liang, C., Shaheen, S.A., Croft, M., Price, J., Simons, D. & Hill, W.T. (1988). Systematics of thin films formed by excimer laser ablation: Results on SmBa2Cu3O7. Appl. Phys. Lett. 53, 703704.CrossRefGoogle Scholar
Patsalas, P., Logothetidis, S. & Metaxa, C. (2002). Optical performance of nanocrystalline transparent ceria films. Appl. Phys. Lett. 81, 466468.CrossRefGoogle Scholar
Rao, K.N., Shivlingappa, L. & Mohan, S. (2003). Studies on single layer CeO2 and SiO2 films deposited by rotating crucible electron beam evaporation. Mater. Sci. Eng. B 98, 3844.Google Scholar
Rousseau, A., Teboul, E. & Bechu, S. (2005). Comparison between Langmuir probe and microwave autointerferometry measurements at intermediate pressure in an argon surface wave discharge. App. Phys. 98, 083306/1–9.Google Scholar
Sanchez, F., Varela, M., Ferrater, C., Garcia-Cuenca, M.V., Aguiar, R. & Morenza, J.L. (1993). Structural and compositional thin films characterization of laser ablated CeO2. Appl. Surf. Sci. 70, 9498.CrossRefGoogle Scholar
Singh, R.K. & Narayan, J. (1989). A novel method for simulating laser-solid interactions in semiconductors and layered structure. J. Mater. Sci. Eng. B 3, 217230.CrossRefGoogle Scholar
Singh, R.K. & Narayan, J. (1990). Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model. Phys. Rev. B 41, 88438859.CrossRefGoogle ScholarPubMed
Talbot, L.,Chou, Y.S. & Willis, D.R. (1966). Kinetic theory of a spherical electrostatic probe in a stationary plasma. Phys. Fluids 9, 21502167.Google Scholar
Toftmann, B., Schou, J., Hansen, T.N. & Lunney, J.G. (2000). Angular distribution of electron temperature and density in a laser-ablation plume. Phys. Rev. Lett. 84, 39984001.CrossRefGoogle Scholar
Wang, R.P., Pan, S.H., Zhou, Y., Zhou, G., Liu, N., Xie, K. & Lu, H. (1999). Fabrication and characteristics of CeO2 films on Si(100) substrates by pulsed laser deposition. J. Cryst. Growth 200, 505509.CrossRefGoogle Scholar
Wood, R.F. & Giles, G.E. (1981). Macroscopic theory of pulsed-laser annealing- thermal transport and melting. Phys. Rev. B 23, 29232942.CrossRefGoogle Scholar
Zakrzewski, Z. & Kopiczynski, T. (1974). Effect of collisions on positive ion collection by a cylindrical Langmuir probe. Plasma Phys. 16, 11951198.CrossRefGoogle Scholar
Zheng, P., Huang, Z.Q., Shaw, D.T. & Kowk, H.S. (1989). Generations of high energy atomic beams in laser – Superconducting target interaction. Appl. Phys. Lett. 54, 280282.CrossRefGoogle Scholar