Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T21:07:14.469Z Has data issue: false hasContentIssue false

Polarization effects in collisions between very intense laser beams and relativistic electrons

Published online by Cambridge University Press:  25 September 2012

Alexandru Popa*
Affiliation:
National Institute for Laser, Plasma and Radiation Physics, Laser Department, Bucharest, Romania
*
Address correspondence and reprint requests to: Alexandrus Popa, National Institute for Laser, Plasma and Radiation Physics, Laser Department, P.O. Box MG-36, Bucharest 077125, Romania. E-mail: ampopa@rdslink.ro; alexandru.popa@inflpr.ro

Abstract

The interaction between laser and relativistic electron beams is a promising source of very energetic X rays. We present an accurate model for the collisions between very intense linearly polarized laser beams, corresponding to relativistic parameters of the order of unity or greater, and electrons having energies up to 100 MeV. Our approach uses only one approximation, namely it neglects the radiative corrections. We consider the two cases in which the laser field polarization is either perpendicular or parallel to the plane defined by the directions of propagation of the laser beam and electron beam, and calculate accurately the properties of the σ and π polarized scattered beams. The angle between the directions of the laser and electron beams, denoted by θL, is allowed to have arbitrary values, so that the widely analyzed 180° and 90° geometries, in which the two beams collide, respectively, head on and perpendicularly, are particular cases. We prove that the polarization properties of the scattered beam depend on the angle θL. By varying this angle, the polarization of the scattered beam can be varied between the two limit configurations in which the electromagnetic field of the scattered beam is σ or π polarized with respect to the scattering plane. Our theoretical results are in good agreement with experimental results published in literature. Our model shows that current technologies can be used to produce hard harmonics of the scattered radiations. These harmonics can have relatively high intensities comparable to the intensities of the first harmonics, and energies higher than 1 MeV. Our results lead to the possibility to realize an adjustable photon source with both the energy and polarization of the scattered radiations accurately controlled by the value of the θL angle.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, S.G., Barty, S.G., Betts, S.M., Brown, W.J., Crane, J.K., Cross, R.R., Fittinghoff, D.N., Gibson, D.J., Hartemann, F.V., Kuba, J, Lesage, G.P., Rosenzweig, J.B., Slaughter, D.R., Springer, P.T. & Tremaine, A.M. (2004). Short-pulse, high-brightness X-ray production with the PLEIADES Thomson-scattering source. Appl. Phys. B 78, 891894.CrossRefGoogle Scholar
Babzien, M., Ben-Zvi, I., Kusche, K., Pavlishin, I.V., Pogorelski, I.V., Siddons, D.P. & Yakimenko, V. (2006). Observation of the Second Harmonic in Thomson Scattering from Relativistic Electrons. Phys. Rev. Lett. 96, 054802.CrossRefGoogle ScholarPubMed
Fortmann, C., Bornath, T., Redmer, R., Reinholtz, H., Roepke, G., Schwarz, V. & Thiele, R. (2009). X-ray Thomson scattering cross-section in strongly correlated plasmas. Laser Part. Beams 27, 311319.CrossRefGoogle Scholar
Hoblit, S. et al. (2009). Measurements of HD(σ, π) and Implications for the Convergence of the Gerasimov-Drell-Hern Integral. Phys. Rev. Lett. 102, 172002.CrossRefGoogle Scholar
Jackson, J.D. (1999). Classical Electrodynamics. New York: Wiley.Google Scholar
Kim, K.J., Chattopadhay, S. & Shank, C.V. (1994). Generation of femtosecond X-rays by 90° Thomson scattering. Nucl. Instrum. Meth. Phys. Res. A 341, 351354.CrossRefGoogle Scholar
Kotaki, H., Kando, M., Dewa, H., Kondo, S., Watanabe, T., Ueda, T., Kinoshita, K., Yoshii, K., Uesaka, M. & Nakajima, K. (2000). Compact X-ray sources by intense laser interactions with beams and plasmas. Nucl. Instrum. Methods Phys. Res. A 455, 166171.CrossRefGoogle Scholar
Krafft, G.A., Doyuran, A. & Rosenzweig, J.B. (2005). Pulsed-laser nonlinear Thomson scattering for general scattering geometries. Phys. Rev. E 72, 056502.CrossRefGoogle ScholarPubMed
Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Lee, J. & Suk, H. (2008). Evolution of a high-density electron beam in the field of a super-intense laser pulse. Laser and Particle Beams 26, 397409.CrossRefGoogle Scholar
Landau, L.D. & Lifschits, E.M. (1959). The Classical Theory of Fields. London: Pergamon.Google Scholar
Liu, J., Xia, C., Liu, L., Li, R. & Xu, Z. (2009). Nonlinear Thomson backscattering of intense laser pulses by electrons trapped in plasma-vacuum boundary. Laser Part. Beams 27, 365370.CrossRefGoogle Scholar
Liu, L., Xia, C., Liu, J., Wang, W., Cai, Y., Wang, C., Li, R. & Xu, Z. (2010). Generation of attosecond X-ray pulses via Thomson scattering of counter-propagating laser pulses. Laser Part. Beams 28, 2734.CrossRefGoogle Scholar
Mao, Q.Q., Kong, Q., Ho, Y.K., Che, H.O., Ban, H.Y., Gu, Y.J. & Kawata, S. (2010). Radiative reaction effect on electron dynamics in an ultra intense laser field. Laser Part. Beams 28, 8390.CrossRefGoogle Scholar
Mourou, G.A, Tajima, T & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.CrossRefGoogle Scholar
Pogorelsky, I.V., Ben-Zvi, I., Hirose, T., Kashiwagi, S., Yakimenko, V., Kusche, K., Siddons, P., Skaritka, J., Kumita, T., Tsunemi, A., Omori, T., Urakawa, J., Washio, M., Yokoya, K., Okugi, T., Liu, Y., He, P. & Cline, D. (2000). Demonstration of 8 × 1018 photons second peaked at 1.8A in a relativistic Thomson scattering experiment. Phys. Rev. ST Accel. Beams 3, 090702.CrossRefGoogle Scholar
Popa, A. (2011). Periodicity property of relativistic Thomson scattering, with application to exact calculation of angular and spectral distributions of scattered field. Phys. Rev. A 84, 023824.CrossRefGoogle Scholar
Sakai, I., Aoki, T., Dobashi, K., Fukuda, M., Higurashi, A., Hirose, T., Iimura, T., Kurihara, Y., Okugi, T., Omori, T., Urakawa, J., Washio, M. & Yokoya, K. (2003). Production of high brightness γ rays through backscattering of laser photons on high-energy electrons. Phys. Rev. ST Accel. Beams 6, 09101.CrossRefGoogle Scholar
Schwoerer, H., Liesfeld, B., Schlenvoigt, H.P., Amthor, K.U. & Sauerbrey, R. (2006). Thomson-Backscattered X Rays From Laser-Accelerated Electrons. Phys. Rev. Lett. 96, 014802.CrossRefGoogle ScholarPubMed
Ta Phuok, K., Rousse, A., Pittman, M., Rousseau, J.P., Malka, V., Fritzler, S., Umstadter, D. & Hulin, D. (2003). X-Ray Radiation from Nonlinear Thomson Scattering of an Intense Femtosecond Laser on Relativistic Electrons in a Helium Plasma. Phys. Rev. Lett. 91, 195001.Google Scholar
Tomassini, P., Giulietti, A., Giulietti, D. & Gizzi, L.A. (2005). Thomson backscattering X-rays from ultra-relativistic electron bunches and temporally shaped laser pulses. Appl. Phys. B 80, 419436.CrossRefGoogle Scholar