Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T19:08:24.407Z Has data issue: false hasContentIssue false

Propagation of laser generated plasmas through inert gases

Published online by Cambridge University Press:  23 December 2009

F. Neri
Affiliation:
Dipartimento di Fisica della Materia e Ingegneria Elettronica, Università di Messina, Messina, Italy
P.M. Ossi
Affiliation:
Dipartimento di Energia & Centre for NanoEngineered MAterials and Surfaces, NEMAS, Politecnico di Milano, Milano, Italy
S. Trusso*
Affiliation:
CNR - Istituto per i Processi Chimico-Fisici, sede di Messina, Salita Sperone, Messina, Italy
*
Address correspondence and reprint requests to: S. Trusso, CNR - Istituto per i Processi Chimico-Fisici, sede di Messina, Salita Sperone, C.da Papardo, Faro Superiore, 98158 Messina, Italy. E-mail: trusso@me.cnr.it

Abstract

A fast photo imaging technique has been used to characterize the expansion dynamics of a laser generated silver plasma propagating through background inert gases (He and Ar) at different pressures. The time evolution of the expanding plasma was investigated in the framework of currently available phenomenological models. Mixed-propagation model gives an accurate description of the initial and late plasma expansion stages in Ar when proper input parameters are taken into account. In He, only the initial quasi-linear expansion and shock wave formation were observed along the space available to plasma motion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bailini, A. & Ossi, P.M. (2006). Effect of ambient gas ionisation on the morphology of a pulsed laser deposited carbon film. Carbon 44, 30493052.Google Scholar
Bailini, A. & Ossi, P.M. (2007). Expansion of an ablation plume in a buffer gas and cluster growth. Europhys. Lett. 79, 3500216.CrossRefGoogle Scholar
Bailini, A., Ossi, P.M. & Rivolta, A. (2007). Plume propagation through a buffer gas and cluster size prediction. Appl. Surf. Sci. 253, 76827685.CrossRefGoogle Scholar
Chrisey, D.B. & Hubler, G.K. (1994). Pulsed Laser Deposition of Thin Films. New York: Wiley.Google Scholar
Fazio, B., Trusso, S., Fazio, E., Neri, F., Ossi, P.M. & Santo, N. (2007). Nanostructured silver thin films deposted by pulsed laser ablation. Rad. Eff. Def. Solids 163, 673683.CrossRefGoogle Scholar
Fazio, E., Neri, F., Ossi, P.M., Santo, N. & Trusso, S. (2009). Ag nanocluster synthesis by laser ablation in Ar atmosphere: a plume dynamics analysis. Laser Part. Beams 27, 281290.CrossRefGoogle Scholar
Filipescu, M., Ossi, P.M., Santo, N. & Dinescu, M. (2009). Radio-frequency assisted pulsed laser deposition of nanostructured WOx films. Appl. Surf. Sci. 255, 96999702.Google Scholar
Geohegan, D.B., Puretzky, A.A., Duscher, G. & Pennycook, S.J. (1998). Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation. Appl. Phys. Lett. 72, 29872989.CrossRefGoogle Scholar
Geohegan, D.B. (1992). Fast intensified-CCD photography of YBa2Cu3O7−x laser ablation in vacuum and ambient oxygen. Appl. Phys. Lett. 60, 27322734.CrossRefGoogle Scholar
Geohegan, D.B. (1994). Diagnostic and characteristic of laser produced plasma. In Pulsed Laser Deposition of Thin Films. (Chrisey, D.B. and Hubler, G.K., Eds.) pp. 115, New York: Wiley.Google Scholar
Gonzalo, J., Afonso, C.N. & Madariaga, I. (1997). Expansion dynamics of the plasma produced by laser ablation of BaTiO3 in a gas environment. J. Appl. Phys. 81, 951955.CrossRefGoogle Scholar
Hafeez, S., Shaikh, N.M. & Baig, M.A. (2008). Spectroscopic studies of Ca plasma generated by the fundamental, second, and third harmonics of a Nd : YAG laser. Laser Part. Beams 26, 4150.CrossRefGoogle Scholar
Latif, A., Anwar, N.S., Aleem, M.A., Rafique, M.S. & Khaleeq-Ur-Rahman, M. (2009). Influence of number of laser shots on laser induced microstructures on Ag and Cu targets. Laser Part. Beams 27, 129136.CrossRefGoogle Scholar
Mirdan, B.M., Jawad, H.A., Batani, D., Conte, V., Desai, T. & Jafer, R. (2009). Surface morphology modifications of human teeth induced by a picosecond Nd:YAG laser operating at 532 nm. Laser Part. Beams 27, 103108.CrossRefGoogle Scholar
Neri, F., Ossi, P.M. & Trusso, S. (2010). Time evolution of a laser generated silver plasma expanding in a background gas. Rad. Eff. Def. Solids, in press.Google Scholar
Ossi, P.M. & Bailini, A. (2008). Cluster growth in an ablation plume propagating through a buffer gas. Appl. Phys. A 93, 645650.CrossRefGoogle Scholar
Rode, A.V., Gamaly, E.G. & Luther-Davies, B. (2000). Strong paramagnetism and possible ferromagnetism in pure carbon nanofoam produced by laser ablation. Appl. Phys. A 70, 135144.Google Scholar
Savitzky, A. & Golay, M.J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 16271639.CrossRefGoogle Scholar
Thareja, R.K. & Sharma, A.K. (2006). Reactive pulsed laser ablation: Plasma studies. Laser Part. Beams 24, 311320.CrossRefGoogle Scholar
Trtica, M.S., Radak, B.B., Gakovic, B.M., Milovanovic, D.S., Batani, D. & Desai, T. (2009). Surface modifications of Ti6A14V by a picosecond Nd:YAG laser. Laser Part. Beams 27, 8590.Google Scholar
Trusso, S., Barletta, E., Barreca, F., Fazio, E. & Neri, F. (2005). Time resolved imaging studies of the plasma produced by laser ablation of silicon in O2/Ar atmosphere. Laser Part. Beams 23, 149153.CrossRefGoogle Scholar
Trusso, S., Barletta, E., Barreca, F. & Neri, F. (2004). Pulsed laser ablation of SiC in a nitrogen atmosphere: formation of CN. Appl. Phys. A 79, 19972005.CrossRefGoogle Scholar
Veiko, V.P., Shakhno, E.A., Smirnov, V.N., Miaskovski, A.M. & Nikishin, G.D. (2006). Laser-induced film deposition by LIFT: Physical mechanisms and applications. Laser Part. Beams 24, 203209.CrossRefGoogle Scholar
Wang, Y.-L., Xu, W., Zhou, Y., Chu, L.-Z. & Fu, G.-S. (2007). Influence of pulse repetition rate on the average size of silicon nanoparticles deposited by laser ablation. Laser Part. Beams 25, 913.CrossRefGoogle Scholar
Wang, Z., Zheng, H. & Zhou, W. (2009). Ultrashort laser subsurface micromachining of three-dimensional microfluidic structures inside photosensitive glass. Laser Part. Beams 27, 521528.Google Scholar
Wolowski, J., Badziak, J., Czarnecka, A., Parys, P., Pisarek, M., Rosinski, M., Turan, R. & Yerci, S. (2007). Application of pulsed laser deposition and laser-induced ion implantation for formation of semiconductor nano-crystallites. Laser Part. Beams 25, 6569.CrossRefGoogle Scholar
Zel'dovich, Y.B. & Raizer, Y.P. (1966). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. New York: Academic Press.Google Scholar