Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T08:58:37.443Z Has data issue: false hasContentIssue false

Self-focusing of laser beam in collisional plasma and its effect on Second Harmonic generation

Published online by Cambridge University Press:  04 October 2011

Arvinder Singh*
Affiliation:
Department of Physics, National Institute of Technology Jalandhar, India
Keshav Walia
Affiliation:
Department of Physics, National Institute of Technology Jalandhar, India
*
Address correspondence and reprint requests to: Arvinder Singh, Department of Physics, National Institute of Technology Jalandhar, India. Email: arvinder6@lycos.com

Abstract

This paper presents an investigation of self-focusing of Gaussian laser beam in collisional plasma and its effect on second harmonic generation. Due to non-uniform heating, collisional non-linearity arises, which leads to redistribution of carriers and hence affects the plasma wave, which in turn affects the second harmonic generation. Effect of the intensity of the laser beam/plasma density on the harmonic yield is studied in detail. We have set up the non-linear differential equations for the beam width parameters of the main beam, plasma wave, second harmonic generation and second harmonic yield by taking full non-linear part of the dielectric constant of collisional plasma with the help of moment theory approach. It is predicted from the analysis that harmonic yield increases/decreases due to increase in the plasma density/intensity of the laser beam respectively.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a non-linear medium. Sov. Phys.Uspekhi. 10, 609636.CrossRefGoogle Scholar
Amendt, P., Eder, D.C. & Wilks, S.C. (1991). X-ray lasing by optical-field-induced ionization. Phys. Rev. Lett. 66, 25892592.CrossRefGoogle ScholarPubMed
Baton, S.D., Baldis, H.A., Jalinaud, T. & Labaune, C. (1993). Fine-Scale Spatial and Temporal Structures of Second-Harmonic Emission from an Underdense Plasma. Europhys. Lett. 23, 191.CrossRefGoogle Scholar
Brandi, F., Giammanco, F. & Ubachs, W. (2006). Spectral Redshift in Harmonic Generation from Plasma Dynamics in the Laser Focus. Phys. Rev. Lett. 96, 123904.CrossRefGoogle ScholarPubMed
Burnett, N.H. & Corkum, P.B. (1989). Cold-plasma production for recombination extreme ultraviolet lasers by optical-field-induced ionization. J. Opt. Soc. Am. B 6, 11951199.CrossRefGoogle Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction Physics of the Fast Ignitor Concept. Phys Rev Lett. 77, 24832486.CrossRefGoogle ScholarPubMed
Engers, T., Fendel, W., Schuler, H., Schulz, H. & von der Linde, D. (1991). Second-harmonic generation in plasmas produced by femtosecond laser pulses. Phys. Rev. A 43, 45644567.CrossRefGoogle ScholarPubMed
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans Plasma Sci. 24, 252288.CrossRefGoogle Scholar
Esarey, E., Ting, A., Sprangle, P., Umstadter, D. & Liu, X. (1993). Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas. IEEE Trans. Plasma Sci. 21, 95104.CrossRefGoogle Scholar
Fibich, G. (1996). Small Beam Non-paraxiality arrests Self-Focusing of Optical Beams. Phys. Rev. Lett. 76, 43564359.CrossRefGoogle Scholar
Ganeev, R.A., Suzuki, M., Baba, M. & Kuroda, H. (2007). High-order harmonic generation from laser plasma produced by pulses of different duration. Phys. Rev. A 76, 023805.Google Scholar
Ginzburg, V.L. (1970). The Propagation of Electromagnetic Waves in Plasmas. Pergamon: Oxford, NY.Google Scholar
Gupta, M.K., Sharma, R.P. & Mahmoud, S.T. (2007). Generation of plasma wave and third harmonic generation at ultra relativistic laser power. Laser part. Beams 25, 211218.CrossRefGoogle Scholar
Hafizi, B., Ting, A., Sprangle, P. & Hubbard, R.F. (2000). Relativistic focusing and ponderomotive channeling of intense laser beams. Phys. Rev. E 62, 41204125.CrossRefGoogle ScholarPubMed
Hora, H. (1981). Physics of Laser Driven Plasmas. Wiley: New York.Google Scholar
Jones, R.D., Mead, W.C., Coggeshall, S.V., Aldrich, C.H., Norton, J.L., Pollak, G.D. & Wallace, J.M. (1988). Self-focusing and filamentation of laser light in high Z plasmas. Phys. Fluids 31, 12491272.CrossRefGoogle Scholar
Lam, J.F., Lippmann, B. & Tappert, F. (1977). Self-trapped laser beams in plasma. Phys. Fluids 20, 11761179.CrossRefGoogle Scholar
Liu, C.S. & Kaw, P.K. (1976). Advances in Plasma Physics. 6, 83.Google Scholar
Malka, V., Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C., Danson, C., Neely, D. & Walsh, F.N. (1997). Second harmonic generation and its interaction with relativistic plasma waves driven by forward Raman instability in underdense plasmas. Phys. Plasmas. 4, 11271131.CrossRefGoogle Scholar
Merdji, H., Guizard, S., Martin, P., Petite, G., Quéré, F., Carré, B., Hergott, J.F., Dé Roff, L., Salie'Res, P., Gobert, O., Meynadier, P. & Perdrix, M. (2000). Ultrafast electron relaxation measurements on a-SiO2 using high-order harmonics generation. Laser Part. Beams 18, 489494.CrossRefGoogle Scholar
Nuzzo, S., Zarcone, M., Ferrante, G. & Basile, S. (2000). A simple model of high harmonic generation in a plasma. Laser Part. Beams 18, 483487.CrossRefGoogle Scholar
Ozaki, T., Kieffer, J.C., Toth, R., Fourmaux, S. & Bandulet, H. (2006). Experimental prospects at the Canadian advanced laser light source facility. Laser Part. Beams 24, 101106.CrossRefGoogle Scholar
Ozaki, T., Bom, L.E., Ganeev, R., Kieffer, J.C., Suzuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321325.CrossRefGoogle Scholar
Ozaki, T., Bom, L.E.Ganeev, R.A. (2008). Extending the capabilities of ablation harmonics to shorter wavelengths and higher intensity. Laser Part. Beams 26, 235240.CrossRefGoogle Scholar
Parashar, J. & Pandey, H.D. (1992). Second-harmonic generation of laser radiation in a plasma with a density ripple. IEEE Trans. Plasma Sci. 20, 996.CrossRefGoogle Scholar
Schifano, E., Baton, S.D., Biancalana, V., Giuletti, A., Giuletti, D., Labaune, C. & Renard, N. (1994). Second harmonic emission from laser-preformed plasmas as a diagnostic for filamentation in various interaction conditions. Laser Part. Beams 12, 435444.CrossRefGoogle Scholar
Shi, Y.J. (2007). Laser electron accelerator in plasma with adiabatically attenuating density. Laser Part. Beams 25, 259265.CrossRefGoogle Scholar
Singh, A., & Singh, N. (2010). Optical guiding of a laser beam in an axially nonuniform plasma channel. Laser Part. Beams 28, 263268.CrossRefGoogle Scholar
Singh, A., & Singh, N. (2011 a). Relativistic guidance of an intense laser beam through an axially non-uniform plasma channel. Laser Part. Beams. DOI: 10.1017/S0263034611000292CrossRefGoogle Scholar
Singh, A., & Singh, N. (2011 b). Guidance of a Laser Beam Through an Axially Non-Uniform Plasma Channel in the Weakly Relativistic Limit. Fusion Energ DOI: 10.1007/s10894-011-9425-0.CrossRefGoogle Scholar
Singh, A., & Singh, N. (2011 c). Guiding of a Laser Beam in Collisionless Magnetoplasma Channel. Published in J. Opt. Soc. Am. BCrossRefGoogle Scholar
Singh, A., & Walia, K. (2010). Relativistic self-focusing and self-channeling of Gaussian laser beam in plasma. Applied Physics B: Lasers and Opticss 101, 617622.CrossRefGoogle Scholar
Singh, A., & Walia, K. (2011). Self-focusing of Gaussian Laser Beam Through Collisionless Plasmas and Its Effect on Second Harmonic Generation. Fusion Energ DOI 10.1007/s10894-011-9426-z.CrossRefGoogle Scholar
Sinha, S.K. & Sodha, M.S. (1980). Transverse self-focusing of a gaussian beam: Moment method. Phys. Rev. A 21, 633638.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Progress in Optics. Amsterdam: North Holland. 13, p 171.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1974). Self Focusing of Laser Beams in Dielectrics, Semiconductors and Plasmas Tata-McGraw-Hill: Delhi.Google Scholar
Sodha, M.S., Kaushik, S.C. & Kumar, A. (1975). Steady state and transient self-interaction of a laser beam in a strongly ionized moving plasma. App. Phys. 7, 187193.CrossRefGoogle Scholar
Sodha, M.S. & Kaw, P.K. (1969). Harmonics in Plasmas in Advances in Electronics and Electron Physics, edited by Marton, L.. Academic: New York. Vol. 27 p. 187293.Google Scholar
Sodha, M.S., Khanna, R.K. & Tripathi, V.K. (1973). Self-focusing of a laser beam in a strongly ionized plasma. Opto-electronics 5, 533538.CrossRefGoogle Scholar
Sodha, M.S., Sinha, S.K. & Sharma, R.P. (1979). The self-focusing of laser beams in magnetoplasmas: the moment theory approach. J. Phys. D: Appl. Phys. 12, 10791091.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser Electron Accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Umstadter, D. (2001). Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasmas 8, 17741785.CrossRefGoogle Scholar
Vlasov, S.N., Petrishchev, V.A. & Talanov, V.I. (1971). Averaged Description of Wave Beams in Linear and Nonlinear Media(the Method of Moments) Radiophys. Quantum Electron. 14, 10621070.CrossRefGoogle Scholar
Walia, K. & Singh, A. (2011). Comparison of Two Theories for the Relativistic Self Focusing of Laser Beams in Plasma. Contrib. Plasma Phys. 51, 375381.CrossRefGoogle Scholar
Young, P.E., Baldis, H.A., Johnston, T.W., Kruer, W.L. & Estabrook, K.G. (1989). Filamentation and second-harmonic emission in laser-plasma interactions. Phys. Rev. Lett. 63, 28122815.CrossRefGoogle ScholarPubMed