Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T04:56:25.761Z Has data issue: false hasContentIssue false

A shock tube study of high temperature reaction of CO–N2O–H2 mixtures and its application to CO2 gasdynamic laser

Published online by Cambridge University Press:  09 March 2009

H. Miyama
Affiliation:
Department of Chemistry, The Technological University of Nagaoka, Kamitomioka, Nagaoka 940–21, Japan
N. Fujii
Affiliation:
Department of Chemistry, The Technological University of Nagaoka, Kamitomioka, Nagaoka 940–21, Japan
N. Takeishi
Affiliation:
Department of Chemistry, The Technological University of Nagaoka, Kamitomioka, Nagaoka 940–21, Japan
T. Tokuda
Affiliation:
Department of Chemistry, The Technological University of Nagaoka, Kamitomioka, Nagaoka 940–21, Japan
N. Sakatsume
Affiliation:
Department of Chemistry, The Technological University of Nagaoka, Kamitomioka, Nagaoka 940–21, Japan

Abstract

In order to investigate the gasdynamic laser (GDL) a conventional pressure driven shock tube equipped with the nozzle apparatus was used. Kinetic study of CO2 formation in CO–N2O–H2 system behind a reflected shock wave was carried out by measuring 4·25 μm emission of CO2. Then, population inversions of the vibrational level of CO2 in an expanding flow of mixtures containing CO2 produced by high temperature reaction of CO–N2O–H2 system behind reflected shock wave were observed by measuring 10.6 μm small signal gains. The experimental data are compared with those obtained by computer simulation assuming quasi-one dimensional steady flow and three vibrational energy modes model. The optimum conditions for CO2 gasdynamic laser by using the shock heated CO–N2O–H2 system are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. D. Jr. 1976 Gasdynamic Lasers: An Introduction (Academic Press, New York).Google Scholar
Fujii, N., Kakuda, T., Sugiyama, T. & Miyama, H. 1985 Chem. Phys. Lett. 122, 489.CrossRefGoogle Scholar
Fujii, N., Kakuda, T., Takeshi, N. & Miyama, H. 1987 J. Phys. Chem. 91, 2144.CrossRefGoogle Scholar
Gardiner, W. C. Jr. 1981 Shock Wave in Chemistry (Lifshitz, A. Ed.) 319p. (Marcel Dekker, New York).Google Scholar
Gordon, S. 1971. Computer Program for Calculation of Complex Chemical Equilibrium Compositions, NASA, N71–37775.Google Scholar
Hanson, R. K. & Salimian, S. 1984 Combustion Chemistry (Gardiner, W. C. Jr. Ed.) 361p. (Springer Verlag, New York).CrossRefGoogle Scholar
Hidaka, Y., Takuma, H., & Suga, M., 1985 Bull. Chem. Soc. Jpn. 58, 291.Google Scholar
Kudryavtsev, N. N., Novikov, S. S. & Svetlichnyi, I. B. 1975 Sov. Phys. Dokl. 19, 831.Google Scholar
Kudryavtsev, N. N., Novikov, S. S. & Svetlichnyi, I. B. 1976 Sov. Phys. Dokl. 21, 748.Google Scholar
Kudryavtsev, V. N. & Soloukhin, R. I. 1984 Fifth Gas Flow and Chemical Lasers Symposium, 425p. (Adam Hilger Ltd.).Google Scholar
Kovtun, U. U., Kudryavtsev, N. N., Novikov, S. S., Svetlichnyi, I. B. & Shagov, P. N. 1978 Sov. Phys. Dokl. 23, 503.Google Scholar
Miyama, H., Takeishi, T., Kakuda, T., Nosaka, Y. & Fujii, N. 1986 Symposium on Gas-Flow Lasers and Chemical Lasers, 24p. (Institute of Laser & Chemical Technology).Google Scholar
Taylor, R. L. & Bitterman, S. 1969 Rev. Modern Phys. 41, 26.CrossRefGoogle Scholar
Warnatz, J. 1984 Combustion Chemistry (Gardiner, W. C. Jr. Ed.) 197p. (Springer Verlag, New York).CrossRefGoogle Scholar
Yamada, H. & Masuda, W. 1985 Trans. Japan Soc. Aero. Space Sci. 26, 74.Google Scholar