Published online by Cambridge University Press: 05 August 2002
Obtaining an X-ray laser emission from plasmas, created and driven by an intense IR laser, has been pursued at the Laboratoire de Spectroscopie Atomique et Ionique (LSAI) for several years. At present, we operate various types of X-ray lasers driven by IR laser pulses of different durations (600 ps, 100 ps, and 600 ps/1 ps). A review of different techniques used at the LSAI to produce a strongly amplified emission using the collisional excitation pumping is presented. In the second part of this paper, to illustrate the potential of the X-ray lasers for applications, we present the main results obtained with an X-ray laser emitting at 21.2 nm in a study of surface defects of a niobium cathode, induced by strong electrical fields. We also describe a novel imaging interferometry device using an X-ray laser as a source and designed as a tool for high-resolution diagnostic of dense plasmas.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.