Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T11:54:29.777Z Has data issue: false hasContentIssue false

Stimulated Brillouin backscattering of a ring-rippled laser beam in collisionless plasma

Published online by Cambridge University Press:  30 June 2015

Gunjan Purohit*
Affiliation:
Laser Plasma Computational Laboratory, Department of Physics, DAV (PG) College, Dehradun, Uttarakhand-248001, India
Priyanka Rawat
Affiliation:
Laser Plasma Computational Laboratory, Department of Physics, DAV (PG) College, Dehradun, Uttarakhand-248001, India
*
Address correspondence and reprint requests to: Gunjan Purohit, Laser Plasma Computational Laboratory, Department of Physics, DAV (PG) College, Dehradun, Uttarakhand-248001, India. E-mail: gunjan75@gmail.com

Abstract

The effect of the propagation of a ring-rippled laser beam in the presence of relativistic and ponderomotive non-linearities on the excitation of ion-acoustic wave (IAW) and resulting stimulated Brillouin backscattering in collisionless plasma at relativistic powers is studied. To understand the nature of propagation of the ring ripple-like instability, a paraxial-ray approach has been invoked in which all the relevant parameters correspond to a narrow range around the irradiance maximum of the ring ripple. Modified coupled equations for growth of ring ripple in the plasma, generations of IAW and back-stimulated Brillouin scattering (SBS) are derived from fluid equations. These coupled equations are solved analytically and numerically to study the intensity of ring-rippled laser beam and excited IAW as well as back reflectivity of SBS in the plasma for various established laser and plasma parameters. It is found that the back reflectivity of SBS is enhanced due to the strong coupling between ring-rippled laser beam and the excited IAW. The results also show that the back reflectivity of SBS reduce for higher intensity of the laser beam.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbi, S.C. & Mahr, H. (1971). Correlation of filaments in nitrobenzene with laser spikes. Phys. Rev. Lett. 26, 604606.CrossRefGoogle Scholar
Afshar-Rad, T., Gizzi, L.A., Desselberger, M. & Willi, O. (1996). Effect of filamentation of Brillouin scattering in large underdense plasmas irradiated by incoherent laser light. Phy. Rev. Lett. 76, 32423245.CrossRefGoogle Scholar
Akhmanov, A.S., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. – Usp. 10, 609636.CrossRefGoogle Scholar
Aleksandrov, V.V., Brenner, M.V., Koval'skii, N.G., Loburev, S.V. & Rubenchik, A.M. (1985). Brillouin scattering in a laser plasma at moderate intensities 1012–1014 W/cm2. Sov. Phys. – JETP 61, 459463.Google Scholar
Baldis, H.A., Campbell, E.M. & Kruer, W.L. (1991). In Laser Plasma Interactions, Handbook of Plasma Physics. Amsterdam: North-Holland, p. 361.Google Scholar
Baldis, H.A., Labuane, C., Moody, J.D., Jalinaud, T. & Tikhonchuk, V.T. (1998). Localization of stimulated Brillouin scattering in random phase plate speckles. Phys. Rev. Lett. 80, 19001903.CrossRefGoogle Scholar
Baldis, H.A., Labuane, C., Schifano, E., Renard, N. & Michard, A. (1996). Resonant seeding of stimulated Brillouin scattering by crossing laser beams. Phys. Rev. Lett. 77, 2957.CrossRefGoogle ScholarPubMed
Baton, S.D., Amiranoff, F., Malka, V., Modena, A., Salvati, M. & Coulaud, C. (1998). Measurement of the stimulated Brillouin scattering reflectivity from a spatially smoothed laser beam in a homogeneous large scale plasma. Phys. Rev. E 57, R4895R4898.CrossRefGoogle Scholar
Berger, R.L., Lasinski, B.F., Langdon, A.B., Kaiser, T.B., Afeyan, B.B., Cohen, B.I., Still, C.H. & Williams, E.A. (1995). Influence of spatial and temporal laser beam smoothing on stimulated Brillouin scattering in filamentary laser light. Phys. Rev. Lett. 75, 10781081.CrossRefGoogle ScholarPubMed
Borisov, A.B., Borovisiky, A.V., Shiryaev, O.B., Korobkin, V.V., Prokhorov, A.M., Solem, J.C., Luk, T.S., Boyer, K. & Rhodes, C.K. (1992). Relativistic and charge displacement self channeling of intense ultrashort laser pulses in plasmas. Phys. Rev. A 45, 58305844.CrossRefGoogle ScholarPubMed
Brandi, H.S., Manus, C. & Mainfray, G. (1993a). Relativistic self-focusing of ultraintense laser pulses in inhomogeneous underdense plasmas. Phys. Rev. E 47, 3780.CrossRefGoogle ScholarPubMed
Brandi, H.S., Manus, C., Mainfray, G., Lehner, T. & Bonnaud, G. (1993b). Relativistic and ponderomotive self focusing of a laser beam in radially inhomogeneous plasma - I: Paraxial approximation. Phys. Fluids 5, 35393550.CrossRefGoogle Scholar
Cohen, B.I., Baldis, H.A., Berger, R.L., Williams, E.A. & Labaune, C. (1998). Modeling of the competition of stimulated Raman and Brillouin scattering in LULI multiple beam experiments. Phys. Plasmas 5, 34023407.CrossRefGoogle Scholar
Chirokikh, A., Seka, W., Simon, A., Craxton, R.S. & Tikhonchuk, V.T. (1998). Stimulated Brillouin scattering in long-scale-length laser plasmas. Phys. Plasmas 5, 11041109.CrossRefGoogle Scholar
Divol, L., Cohen, B.I., Williams, E.A., Langdon, A.B. & Lasinski, B.F. (2003). Nonlinear saturation of stimulated Brillouin scattering for long time scales. Phys. Plasmas 10, 37283732.CrossRefGoogle Scholar
Fuchs, J., Labuane, C., Depierreux, D., Baldis, H.A., Michard, A. & James, G. (2001). Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma. Phys. Rev. Lett. 86, 432435.CrossRefGoogle Scholar
Fuchs, J., Labuane, C., Depierreux, S., Tikhonchuk, V.T. & Baldis, H.A. (2000). Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment. Phys. Plasmas 7, 46594668.CrossRefGoogle Scholar
Gao, W., Lu, Z.W., Wang, S.Y., He, W.M. & Hasi, W.L.J. (2010). Measurement of stimulated Brillouin scattering threshold by the optical limiting of pump output energy. Laser Part. Beams 28, 179184.CrossRefGoogle Scholar
Gauniyal, R., Chauhan, P., Rawat, P. & Purohit, G. (2014). Effect of self-focused rippled laser beam on the excitation of ion acoustic wave in relativistic ponderomotive regime. Laser Part. Beams 32, 557568.CrossRefGoogle Scholar
Giacone, R.E. & Vu, H.X. (1998). Nonlinear kinetic simulations of stimulated Brillouin-Scattering. Phys. Plasmas 5, 14551460.CrossRefGoogle Scholar
Giulietti, A., Macchi, A., Schifano, E., Biancalana, V., Danson, C., Giulietti, D., Gizzi, L.A. & Willi, O. (1999). Stimulated Brillouin scattering from underdense expending plasma in a regime of strong filamentation. Phys. Rev. E 59, 10381046.CrossRefGoogle Scholar
Huller, S. (1991). Stimulated Brillouin scattering off non-linear ion acoustic waves. Phys. Fluids B 3, 33173330.CrossRefGoogle Scholar
Huller, S., Masson-Laborde, P.E., Pesme, D., Labaune, C. & Bandulet, H. (2008). Modeling of stimulated Brillouin scattering in expanding plasma. J. Phy.: Conf. Ser. 112, 022031022034.Google Scholar
Kumar, A., Gupta, M.K. & Sharma, R.P. (2006). Effect of ultra intense laser pulse on the propagation of electron plasma wave in relativistic and ponderomotive regime and particle acceleration. Laser Part. Beams 24, 403409.CrossRefGoogle Scholar
Krall, N.A. & Trivelpicec, A.W. (1973). Principle of Plasma Physics. Tokyo: McGraw Hill-Kogakusha.CrossRefGoogle Scholar
Kruer, W.L. (1988). The Physics of Laser Plasma Interaction. New York: Addison-Wesley.Google Scholar
Labaune, C., Baldis, H.A., Schifano, E., Bauer, B.S., Michard, A., Renard, N., Seka, W., Moody, J.D. & Estabrook, K.G. (1996). Location of ion-acoustic waves from back and side stimulated Brillouin scattering. Phys. Rev. Lett. 76, 3727.CrossRefGoogle ScholarPubMed
Labaune, C., Baldis, H.A. & Tikhonchuk, V.T. (1997). Interpretation of stimulated Brillouin scattering based on the use of random phase plates. Europhys. Lett. 38, 3136.CrossRefGoogle Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.CrossRefGoogle Scholar
Mahmoud, S.T., Sharma, R.P., Kumar, A. & Yadav, S. (1999). Effect of pump depletion and self-focusing on stimulated Brillouin scattering process in laser–plasma interactions. Phys. Plasmas 6, 927931.CrossRefGoogle Scholar
Masson-Laborde, P.E., Huller, S., Pesme, D., Labuane, Ch., Depierreux, S., Loiseau, P. & Bandulet, H. (2014). Stimulated Brillouin scattering reduction induced by self-focusing for a single laser speckle interacting with an expanding plasma. Phys. Plasmas 21, 032703032715.CrossRefGoogle Scholar
Matsuoka, T., Lei, A., Yabuuchi, T., Adumi, K., Zheng, J., Kodamal, R., Sawai, K., Suzuki, K., Kitagawa, Y., Norimatsu, T., Nagai, K., Nagatomo, H., Izawa, Y., Mima, K., Sentoku, Y. & Tanaka, K.A. (2008). Focus optimization of relativistic self focusing for anomalous laser penetration into over dense plasmas (super-penetration). Plasma Phys. Control. Fusion 50, 10501.CrossRefGoogle Scholar
Maximov, A.V., Oppitz, R.M., Rozmus, W. & Tikhonchuk, V.T. (2000). Nonlinear stimulated Brillouin scattering in inhomogeneous plasmas. Phys. Plasmas 7, 42274237.CrossRefGoogle Scholar
Moody, J.D., MacGowan, B.J., Rothenberg, J.E., Berger, R.L., Divol, L., Glenzer, S.H., Kirkwood, R.K., Williams, E.A. & Young, P.E. (2001). Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma. Phys. Rev. Lett. 86, 28102813.CrossRefGoogle Scholar
Purohit, G., Pandey, H.D., Mahmoud, S. & Sharma, R.P. (2004). Growth of high power laser ripple in plasma and its effect on plasma wave excitation: Relativistic effects. J. Plasma Phys. 70, 2540.CrossRefGoogle Scholar
Rawat, P., Gauniyal, R., & Purohit, G. (2014). Growth of ring ripple in a collisionless plasma in relativistic–ponderomotive regime and its effect on stimulated Raman backscattering process. Phys. Plasmas 21, 062109-1-11.CrossRefGoogle Scholar
Riconda, C., Heron, A., Pesme, D., Huller, S., Tikhonchuk, V.T. & Detering, F. (2005). Electron and ion kinetic effects in the saturation of a driven ion acoustic wave. Phys. Plasmas 12, 112308-1-13.CrossRefGoogle Scholar
Sharma, R.P., Sharma, P., Rajput, S. & Bhardwaj, A.K. (2009). Suppression of stimulated Brillouin scattering in laser beam hot spots. Laser Part. Beams 27, 619627.CrossRefGoogle Scholar
Sharma, R.P. & Singh, R.K. (2013). Stimulated Brillouin backscattering of filamented hollow Gaussian beams. Laser Part. Beams 31, 689696.CrossRefGoogle Scholar
Singh, A. & Walia, K. (2012). Self-focusing of Gaussian laser beam in collisionless plasma and its effect on stimulated Brillouin scattering process. Opt. Commun. 290, 175182.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self focusing of laser beams in plasmas and semiconductors. Prog. Opt. E3, 169265.CrossRefGoogle Scholar
Sodha, M.S., Mishra, S. & Mishra, S.K. (2009). Growth of a ring ripple on a Gaussian electromagnetic beam in a plasma with relativistic–ponderomotive nonlinearity. Laser Part. Beams 27, 689698.CrossRefGoogle Scholar
Sodha, M.S., Sharma, A., Prakash, G. & Verma, M.P. (2004). Growth of a ring ripple on a Gaussian beam in a plasma. Phys. Plasmas 11, 30233027.CrossRefGoogle Scholar
Sodha, M.S., Singh, T., Singh, D.P. & Sharma, R.P. (1981). Growth of laser ripple in a plasma and its effect on plasma wave excitation. Phys. Fluids 24, 914919.CrossRefGoogle Scholar
Sodha, M.S., Umesh, G. & Sharma, R.P. (1979). Enhanced Brillouin scattering of a Gaussian laser beam from a plasma. J. Appl. Phys. 50, 46784683.CrossRefGoogle Scholar