Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-11T02:50:34.372Z Has data issue: false hasContentIssue false

Supershort avalanche electron beam generation in gases

Published online by Cambridge University Press:  12 November 2008

V.F. Tarasenko*
Affiliation:
High Current Electronics Institute SB RAS, Tomsk, Russia
E.H. Baksht
Affiliation:
High Current Electronics Institute SB RAS, Tomsk, Russia
A.G. Burachenko
Affiliation:
High Current Electronics Institute SB RAS, Tomsk, Russia
I.D. Kostyrya
Affiliation:
High Current Electronics Institute SB RAS, Tomsk, Russia
M.I. Lomaev
Affiliation:
High Current Electronics Institute SB RAS, Tomsk, Russia
D.V. Rybka
Affiliation:
High Current Electronics Institute SB RAS, Tomsk, Russia
*
Address correspondence and reprint requests to: V.F. Tarasenko, High Current Electronics Institute, 2/3, Akademichesky Ave., Tomsk 634055, Russia. E-mail: vft@loi.hcei.tsc.ru

Abstract

This paper reports on the properties of a supershort avalanche electron beam generated in the air or other gases under atmospheric pressure and gives the analysis of a generation mechanism of supershort avalanche electron beam, as well as methods of such electron beams registration. It is reported that in the air under the pressure of 1 atm, a supershort (<100 ps) avalanche electron beam is formed in the solid angle more than 2π steradian. The electron beam has been obtained behind a 45 µm thick Al-Be foil in SF6 and Xe under the pressure of 2 atm, and in He, under the pressure of about 15 atm. It is shown that in SF6 under the high pressure (>1 atm) duration (full width at half maximum) of supershort avalanche electron beam pulse is about 150 ps.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alekseev, S.B., Orlovskii, V.M. & Tarasenko, V.F. (2003 a). Electron beams formed in a diode filled with air or nitrogen at atmospheric pressure. Tech. Phys. Lett. 29, 411413.CrossRefGoogle Scholar
Alekseev, S.B., Orlovskii, V.M. & Tarasenko, V.F. (2003 b). Atmospheric–pressure CO2 laser with an electron-beam-initiated discharge produced in a working mixture. Quan. Electr. 33, 10591061.CrossRefGoogle Scholar
Askarayn, G.A. (1973). About new possibilities on particle acceleration up to high energies. Trudy FIAN 66, 6672.Google Scholar
Babich, L.P. (2003). High-Energy Phenomena in Electric Discharges in Dense Gases: Theory, Experiment, and Natural Phenomena. Arlington. VA: Futurepast Inc.Google Scholar
Babich, L.P. & Loiko, T.V. (1985). Energy spectra and time parameters of the runaway electrons at a nanosecond breakdown in dense gases. Tech. Phys. 55, 956958.Google Scholar
Babich, L.P. & Loiko, T.V. (1991). Runaway electrons at high-voltage nanosecond discharges in sulfur hexafluoride at pressure of 1 atm. Tech. Phys. 61, 153155.Google Scholar
Baksht, E.Kh., Lomaev, M.I., Rybka, D.V. & Tarasenko, V.F. (2006). High–current-density subnanosecond electron beams formed in a gas-filled diode at low pressures. Tech. Phys. Lett. 32, 948950.CrossRefGoogle Scholar
Baksht, E.Kh., Balzovskii, E.V., Klimov, A.I., Kurkan, I.K., Lomaev, M.I., Rybka, D.V. & Tarasenko, V.F. (2007). A collector assembly for measuring a subnanosecond – duration electron beam current. Instr. Exper. Techn. 50, 811814.CrossRefGoogle Scholar
Buranov, S.N., Gorokhov, V.V., Karelin, V.I. & Repin, P.B. (1998). Microstructure of current channels and electron runaway in high voltage diffused atmospheric pressure discharges. In Plasma Physics Investigations (Selemir, B. and Dubinov, A., Eds.), pp. 3967. Sarov, Russian.Google Scholar
Djuzhev, N. & Tishin, J. (2001). Mo and Si technologies for flat field effect displays. which one is better? Electr. Sci. Techn. Bus. 1, 5053.Google Scholar
Gurevich, A.V. & Zybin, K.P. (2001). Runaway breakdown and electric discharges in thunderstorms. Phys.-Uspekhi. 44, 11191140.CrossRefGoogle Scholar
Korolev, Yu.D. & Mesyats, G.A. (1982). Field-Emission and Explosive Processes in Gas Discharges. Novosibirsk: Nauka.Google Scholar
Kovalchuk, B.M., Abdullin, E.N., Grishin, D.M., Gubanov, V.P., Zorin, V.P., Kim, A.A., Kumpjak, E.V., Morozov, A.V., Skakun, V.S., Stepchenko, A.S., Tarasenko, V.F., Tolkachev, V.S., Schanin, P.M. & Tsoi, N.V. (2003). Linear transformer accelerator for the excimer laser. Laser Part. Beams 21, 219222.CrossRefGoogle Scholar
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.CrossRefGoogle Scholar
Krompholz, H.G., Hatfield, L.L., Neuber, A.A., Kohl, K.P., Chaporro, J.E. & Ryu, H.-Y. (2006). Phenomenology of subnanosecond gas discharge at pressure below one atmosphere. IEEE Trans. Plasma Sci. 34, 927936.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Lipatov, E.I., Tarasenko, V.F., Orlovskii, V.M. & Alekseev, S.B. (2005). Luminescence of crystals excited by a KrCl laser and a subnanosecond electron beam. Quan. Electr. 35, 745748.CrossRefGoogle Scholar
Liu, J.L., Yin, Y., Ge, B., Zhan, T.W., Chen, X.B., Feng, J.H., Shu, T., Zhang, J.D. & Wang, X.X. (2007 a). An electron-beam accelerator based on spiral water PFL. Laser Part. Beams 25, 593599.CrossRefGoogle Scholar
Liu, J.L, Zhan, T.W., Zhang, J., Liu, Z.X., Feng, J.H., Shu, T., Zhang, J.D. & Wang, X.X. (2007 b). A Tesla pulse transformer for spiral water pulse forming line charging. Laser Part. Beams 25, 305312.CrossRefGoogle Scholar
Lomaev, M.I., Mesyats, G.A., Rybka, V.D., Tarasenko, V.F. & Baksht, E.Kh. (2007). High–power short-pulse xenon dimmer spontaneous radiation source. Quan. Electr. 37, 595596.CrossRefGoogle Scholar
Losev, V.F., Kovalchuk, B.M., Tarasenko, V.F., Panchenko, Yu. N., Ivanov, N.G., Konovalov, I.N., Abdullin, E.N., Panchenko, A.N., Liu, J., Zorin, V.B., Skakun, V.S., Gubanov, V.P., Stepchenko, A.S. & Tarasenko, V.F. (2006). Wide-aperture excimer laser system. Quan. Electr. 36, 3338.CrossRefGoogle Scholar
Mesyats, G.A., Korovin, S.D., Sharipov, K.A., Shpak, V.G., Shunailov, S.A. & Yalandin, M.I. (2006). Dynamics of subnanosecond electron beam formation in gas-filled and vacuum diodes. Tech. Phys. Lett. 32, 1822.CrossRefGoogle Scholar
Mesyats, G.A. (2007). On a source of outgoing electrons in a pulsed gas discharge. JETP Lett. 85, 119122.CrossRefGoogle Scholar
Mesyats, G.A., Shpak, V.G., Shunailov, S.A. & Yalandin, M.I. (2008). On a source of outgoing electrons and acceleration mode of a picoseconds beam in a gas-filled diode with inhomogeneous electric field. Tech. Phys. Lett. 4, 7180.Google Scholar
Panchenko, A.N., Orlovskii, V.M. & Tarasenko, V.F. (2003). Efficient E-beam and discharge initiated nonchain HF (DF) lasers. Laser Part. Beams 21, 223232.CrossRefGoogle Scholar
Sakai, K., Miyazaki, S., Kawata, S., Hasumi, S. & Kikuchi, T. (2006). High-energy-density attosecond electron beam production by intense short-pulse laser with a plasma separator. Laser Part. Beams 24, 321327.CrossRefGoogle Scholar
Shpak, V.G. (1980). Measurement of energy characteristic on a nanosecond e-beam air-extracted through a foil. Prib. Tekh. Eksper. 3, 165167.Google Scholar
Tarasenko, V.F., Skakun, V.S., Kostyrya, I.D., Alekseev, S.B. & Orlovskii, V.M. (2004). On formation of subnanosecond electron beams in air under atmospheric pressure. Laser Part. Beams 22, 7582.CrossRefGoogle Scholar
Tarasenko, V.F., Shpak, V.G., Shunailov, S.A. & Kostyrya, I.D. (2005 a). Supershort electron beam from air filled diode at atmospheric pressure. Laser Part. Beams 23, 545551.CrossRefGoogle Scholar
Tarasenko, V.F. & Yakovlenko, S.I. (2005 b). High-power subnanosecond beams of runaway electrons and volume discharge formation in gases at atmospheric pressure. Plasma Devic. Operat. 13, 231279.CrossRefGoogle Scholar
Tarasenko, V.F., Kostyrya, I.D., Petin, V.K. & Shlyakhtun, S.V. (2006). Beam electron energy distribution at a volume nanosecond discharge in atmospheric–pressure air. Tech. Phys. 51, 15761585.CrossRefGoogle Scholar
Tarasenko, V.F., Rybka, D.V., Baksht, E.Kh., Kostyrya, I.D., & Lomaev, M.I. (2008). Generation and measurement of subnanosecond electron beams in gas-filled diodes. Instr. Exper. Techn. 51, 213219.CrossRefGoogle Scholar
Tarasova, L.V., Khudyakova, L.N., Loiko, T.V. & Tsukerman, V.A. (1974). The fast electrons and X-ray radiation of nanosecond pulsed discharges in gases under 0.1–760 Torr. J. Tech. Phys. 44, 564568.Google Scholar
Tkachev, A.N. & Yakovlenko, S.I. (2004). Runaway of electrons in dense gases and mechanism of generation of high-power subnanosecond beams. CEJP 2, 579635.Google Scholar
Vasilyak, L.M., Kostyuchenko, S.V., Kudryavtsev, N.N. & Filigin, I.V. (1994). Fast ionisation waves under electrical breakdown conditions). Phys. Uspekhi. 37, 247268.CrossRefGoogle Scholar
Wong, C.S., Woo, H.J. & Yap, S.L. (2007). A low energy tunable pulsed X-ray source based on the pseudospark electron beam. Laser Part. Beams 25, 497502.CrossRefGoogle Scholar
Zagulov, F.Ya., Kotov, A.S., Shpak, V.G., Yurike, Ya.Ya. & Yalandin, M.I. (1989). RADAN–small-sized pulse-repetitive high-current accelerators of electrons. Prib. Tekh. Eksper. 2, 146149.Google Scholar