Published online by Cambridge University Press: 23 March 2009
Controlled fusion energy from burning hydrogen with boron-11 is of interest because no neutrons are produced. Following the scheme of ignition by spherical irradiation by laser or particle beams, one has to deal with exorbitant conditions of densities and input energies. A new approach following the scheme of block ignition with laser pulses of picosecond (ps) duration and more than petawatt (PW) power led to the possibility of plane geometry irradiation of the fuel using the anomalous effect of block ignition for deuterium tritium (DT) based on updated conditions for the initial computations. We present the extension for H-11B resulting in a very less dramatic difference to DT than in the case of spherical pellet geometry. Ignition thresholds may be only about one order of magnitude higher and the needed temperatures of about 50 keV are no problem for the skin layer acceleration by nonlinear forces (SLANF) for the block generation.
Presentation at the Thirtieth European Conference on Laser Interaction with Matter, Darmstadt, Germany, 31 August–5 September 2008.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.