Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T06:29:03.579Z Has data issue: false hasContentIssue false

Transition-Cherenkov radiation of terahertz generated by super-luminous ionization front in femtosecond laser filament

Published online by Cambridge University Press:  20 July 2010

Guang-Yue Hu*
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China
Baifei Shen
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China
An-Le Lei
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China
Ru-Xin Li
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China
Zhi-Zhan Xu
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China
*
Address correspondence and reprint requests to: Guang-Yue Hu, State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China. E-mail: gyhu@siom.ac.cn

Abstract

Super-luminous ionization front achieved by using axicon as focus lens is proposed to improve the transition-Cherenkov radiation of terahertz emitted from a femtosecond laser filament in air. Benefitted from the better coherent superposition of radiation electric field generated by dipole-like electron current behind the ionization front, the terahertz radiation in far zone is enhanced by one order when the velocity of ionization front exceeds the light speed. Moreover, the radiation spectrum extends toward high frequency and covers the entire terahertz gap.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akturk, S., Zhou, B., Franco, M., Couairon, A. & Mysyrowicz, A. (2008). Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon. Opt. Commun. 282, 129134.CrossRefGoogle Scholar
Antonsen, T.M. Jr., Palastro, J. & Milberg, H.M. (2007). Excitation of terahertz radiation by laser pulses in nonuniform plasma channels. Phys. Plasmas 14, 033107.CrossRefGoogle Scholar
Bartel, T., Gaal, P., Reimann, K., Woerner, M. & Elsaesser, T. (2005). Generation of single-cycle THz transients with high electric-field amplitudes. Opt. Lett. 30, 28052807.CrossRefGoogle ScholarPubMed
Bessonov, E.G., Gorbunkov, M.V., Ishkhanov, B.S., Kostryukov, P.V., Maslova, Y.Y.A., Shvedunov, V.I., Tunkin, V.G. & Vinogradov, A.V. (2008). Laser-electron generator for X-ray applications in science and technology. Laser Part. Beams 26, 489495.CrossRefGoogle Scholar
Bin, J.H., Lei, A.L., Yang, X.Q., Huang, L.G., Yu, M.Y., Yu, W. & Tanaka, K.A. (2009). Quasi-monoenergetic proton beam generation from a double-layer solid target using an intense circularly polarized laser. Laser Part. Beams 27, 485490.CrossRefGoogle Scholar
Bystrov, A.M., Vvedenskii, N.V. & Gildenburg, V.B. (2005). Generation of terahertz radiation upon the optical breakdown of a gas. JETP Lett. 82, 753757.CrossRefGoogle Scholar
Chen, M., Pukhov, A., Peng, X.-Y. & Wili, O. (2008). Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases. Phys. Rev. E 78, 046406.CrossRefGoogle ScholarPubMed
Chen, Y., Yamaguchi, M., Wang, M. & Zhang, X.-C. (2007). Terahertz pulse generation from noble gases. Appl. Phys. Lett. 91, 251116.CrossRefGoogle Scholar
Cheng, C.C., Wright, E.M. & Moloney, J.V. (2001). Generation of Electromagnetic Pulses from Plasma Channels Induced by Femtosecond Light Strings. Phys. Rev. Lett. 87, 213001.CrossRefGoogle ScholarPubMed
Cheng, C.C., Wright, E.M. & Moloney, J.V. (2002). Cheng, Wright, and Moloney Reply. Phys. Rev. Lett. 89, 139302.CrossRefGoogle Scholar
Cook, D.J. & Hochstrasser, R.M. (2000). Intense terahertz pulses by four-wave rectification in air. Opt. Lett. 25, 12101212.CrossRefGoogle ScholarPubMed
Couairon, A. & Mysyrowicz, A. (2007). Femtosecond filamentation in transparent media. Phys. Rep. 441, 47189.CrossRefGoogle Scholar
D'Amico, C., Houard, A., Akturk, S., Liu, Y., Le Bloas, J., Franco, M., Prade, B., Couairon, A., Tikhonchuk, V.T. & Mysyrowicz, A. (2008). Forward THz radiation emission by femtosecond filamentation in gases. New J. Phys. 10, 013015.CrossRefGoogle Scholar
D'Amico, C., Houard, A., Franco, M., Prade, B., Mysyrowicz, A., Couairon, A. & Tikhonchuk, V.T. (2007). Conical forward THz emission from femtosecond-laser-beam filamentation in air. Phys. Rev. Lett. 98, 235002.Google ScholarPubMed
Dong, X.G., Sheng, Z.M., Wu, H.C., Wang, W.M. & Zhang, J. (2009). Single-cycle strong terahertz pulse generation from a vacuum-plasma interface driven by intense laser pulses. Phys. Rev. E 79, 046411.CrossRefGoogle ScholarPubMed
Dorranian, D., Ghoranneviss, M., Starodubtsev, M., Yugami, N. & Nishida, Y. (2005). Microwave emission from TW-100 fs laser irradiation of gas jet. Laser Part. Beams 23, 583596.CrossRefGoogle Scholar
Field, G.B. (1956). Radiation by plasma oscillations. Astrophys. J. 124, 555570.CrossRefGoogle Scholar
Gildenburg, V.B. & Vedenskii, N.V. (2007). Optical-to-THz wave conversion via excitation of plasma oscillations in the tunneling-ionization process. Phys. Rev. Lett. 98, 245002.CrossRefGoogle ScholarPubMed
Golubev, S.V., Suvorov, E.V. & Shalashov, A.G. (2004). On the possibility of terahertz wave generation upon dense gas optical breakdown. JETP Lett. 79, 361364.CrossRefGoogle Scholar
Grichine, V.M. (2003). Radiation of arbitrary moving charge in an absorbing medium. Radiat. Phys. Chem. 67, 93103.CrossRefGoogle Scholar
Hamster, H., Sullivan, A., Gordon, S. & Falcone, R.W. (1994). Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Phys. Rev. E 49, 671677.CrossRefGoogle ScholarPubMed
Hamster, H., Sullivan, A., Gordon, S., White, W. & Falcone, R.W. (1993). Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71, 27252728.CrossRefGoogle ScholarPubMed
Hashimshony, D., Zigler, A. & Papadopoulos, K. (2001). Conversion of Electrostatic to Electromagnetic Waves by Superluminous Ionization Fronts. Phys. Rev. Lett. 86, 28062809.CrossRefGoogle ScholarPubMed
Houard, A., Liu, Y., Mysyrowicz, A. & Leriche, B. (2007). Calorimetric detection of the conical terahertz radiation from femtosecond laser filaments in air. Appl. Phys. Lett. 91, 241105.CrossRefGoogle Scholar
Houard, A., Liu, Y., Prade, B. & Mysyrowicz, A. (2008). Polarization analysis of terahertz radiation generated by four-wave mixing in air. Opt. Lett. 33, 11951197.CrossRefGoogle ScholarPubMed
Hoyer, W., Knorr, A., Moloney, J.V., Wright, E.M., Kira, M. & Koch, S.W. (2005). Photoluminescence and terahertz emission from femtosecond laser-induced plasma channels. Phys. Rev. Lett. 94, 115004.CrossRefGoogle ScholarPubMed
Hu, G.Y., Lei, A.L., Shen, B.F., Li, R.X. & Xu, Z.Z. (2009). Single-shot coherent detection of terahertz pulse with broadband spectral coverage. Phys. Plasmas 16, 043116.CrossRefGoogle Scholar
Hu, G.Y., Liu, S.Y., Zheng, J., Wu, C.S., Li, J.H., Wu, S.C., Zhang, J.Y., Yang, J.M., Yang, G.H., Yi, R.Q., Du, H.B., Huang, Y.X., Hu, X. & Ding, Y.K. (2007). Efficient K-shell X-ray sources produced with titanium foils. Phys. Plasmas 14, 033103.CrossRefGoogle Scholar
Hu, G.Y., Zhang, J.Y., Zheng, J., Shen, B.F., Liu, S.Y., Yang, J.M., Ding, Y.K., Hu, X., Huang, Y.X., Du, H.B., Yi, R.Q., Lei, A.L. & Xu, Z.Z. (2008 b) Angular distribution and conversion of multi-keV L-shell X-ray sources produced from nanosecond laser irradiated thick-foil targets. Laser Part. Beams 26, 661670.CrossRefGoogle Scholar
Hu, G.Y., Zheng, J., Shen, B.F., Lei, A.L., Liu, S.Y., Zhang, J.Y.,Yang, J.M., Yang, G.H., Ding, Y.K., Hu, X., Huang, Y.X., Du, H.B., Yi, R.Q. & Xu, Z.Z. (2008 a). Characterization of a multi-keV X-ray source produced by nanosecond laser irradiation of a solid target: The influence of laser focus spot and target thickness. Phys. Plasmas 15, 023103.CrossRefGoogle Scholar
Jelley, J.V. (1958). Cerenkov Radiation and its Applications. New York: Pergamon Press.Google Scholar
Karpowicz, N. & Zhang, X.-C. (2009). Coherent terahertz echo of tunnel ionization in gases. Phys. Rev. Lett. 102, 093001.CrossRefGoogle ScholarPubMed
Kim, K.Y., Glownia, J.H., Taylor, A.J. & Rodriguez, G. (2007). Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Opt. Express 15, 45774584.CrossRefGoogle ScholarPubMed
Kim, K.Y., Taylor, A.J., Glownia, J.H. & Rodriguez, G. (2008). Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nat. Photonics 2, 605609.CrossRefGoogle Scholar
Kostin, V.A. & Vvedenskii, N.V. (2006). Generation of terahertz radiation by superluminous ionization front. Czech. J. Phys. 56, B587B590.CrossRefGoogle Scholar
Kress, M., Loffler, T., Thomson, M.D., Dorner, R., Gimpel, H., Zrost, K., Ergler, T., Moshammer, R., Morgner, U., Ullrich, J. & Roskos, H.G. (2006). Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nat. Phys. 2, 327331.CrossRefGoogle Scholar
Kress, M., Loffler, T., Eden, S., Thomson, M.D. & Roskos, H.G. (2004). Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. Opt. Lett. 29, 11201122.CrossRefGoogle ScholarPubMed
Landau, L.D. & Lifshitz, E.M. (1975). The Classical Theory of Fields. Oxford: Butterworth-Heinemann.Google Scholar
Layer, B.D., York, A., Antonsen, T.M., Varma, S., Chen, Y.-H., Leng, Y. & Milchberg, H.M. (2007). Ultrahigh-intensity optical slow-wave structure. Phys. Rev. Lett. 99, 035001.CrossRefGoogle ScholarPubMed
Leemans, W.P., Geddes, C.G.R., Faure, J., Tóth, Cs., VanTilborg, J., Schroeder, C.B., Esarey, E., Fubiani, G., Auerbach, D., Marcelis, B., Carnahan, M.A., Kaindl, R.A., Byrd, J. & Martin, M.C. (2003). Observation ofterahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys. Rev. Lett. 91, 074802.CrossRefGoogle Scholar
Li, L., Liu, L., Xu, Q., Chen, G., Chang, L., Wan, H. & Wen, J. (2009). Relativistic electron beam source with uniform high-density emitters by pulsed power generators. Laser Part. Beams 27, 335344.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (2009 a). Tunable terahertz radiation from a tunnel ionized magnetized plasma cylinder. J. Appl. Phys. 105, 013313.Google Scholar
Liu, J.S., Xia, C.Q., Liu, L., Li, R.X. & Xu, Z.Z. (2009 b) Nonlinear Thomson backscattering of intense laser pulses by electrons trapped in plasma-vacuum boundary. Laser Part. Beams 27, 365370.CrossRefGoogle Scholar
Liu, Y., Houard, A., Prade, B., Mysyrowicz, A., Diaw, A. & Tikhonchuk, V.T. (2008). Amplification of transition-Cherenkov terahertz radiation of femtosecond filament in air. Appl. Phys. Lett. 93, 051108.Google Scholar
Loffler, T. & Roskos, H.G. (2002). Gas-pressure dependence of terahertz-pulse generation in a laser-generated nitrogen plasma. J. Appl. Phys. 91, 26112614.CrossRefGoogle Scholar
Loffler, T., Jacob, F. & Roskos, H.G. (2000). Generation of terahertz pulses by photoionization of electrically biased air. Appl. Phys. Lett. 77, 453455.CrossRefGoogle Scholar
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic ragime. Laser Part. Beams 22, 399405.CrossRefGoogle Scholar
Mcleod, J.H. (1954). The axicon: A new type of optical element. J. Opt. Soc. Am. 44, 592597.CrossRefGoogle Scholar
Polynkin, P., Kolesik, M., Roberts, A., Faccio, D., Trapani, P.D. & Moloney, J. (2008). Generation of extended plasma channels in air using femtosecond Bessel beams. Opt. Express 16, 1573315740.CrossRefGoogle ScholarPubMed
Proulx, A., Talebpour, A., Petit, S. & Chin, S.L. (2000). Fast pulsed electric field created from the self-generated filament of a femtosecond Ti:Sapphire laser pulse in air. Opt. Commun. 174, 305309.CrossRefGoogle Scholar
Purohit, G., Chauhan, P. & Sharma, R.P. (2009). Resonant excitation of the upper hybrid wave by relativistic cross focusing of two laser beams. Laser Part. Beams 27, 429437.CrossRefGoogle Scholar
Purohit, G., Chauhan, P.K. & Sharma, R.P. (2008). Excitation of an upper hybrid wave by a high power laser beam in plasma. Laser Part. Beams 26, 6167.CrossRefGoogle Scholar
Qian, Y. & Wang, Y.Z. (2004). Theoretical analysis of a collimated hollow-laser-beam generated by a single axicon using diffraction integral. Chin. Opt. Lett. 2, 232234.Google Scholar
Sheng, Z.M., Meyer-ter-Vehn, J. & Pukhov, A. (1998). Analytic and numerical study of magnetic fields in the plasma wake of an intense laser pulse. Phys. Plasmas 5, 37643773.CrossRefGoogle Scholar
Sheng, Z.M., Mima, K. & Zhang, J. (2005 b). Powerful terahertz emission from laser wake fields excited in inhomogeneous plasmas. Phys. Plasmas 12, 123103.CrossRefGoogle Scholar
Sheng, Z.M., Mima, K., Zhang, J. & Sanuki, H. (2005 a). Emission of electromagnetic pulses from laserwakefields through linear mode conversion. Phys. Rev. Lett. 94, 095003.CrossRefGoogle Scholar
Shvets, G., Kaganovich, I. & Startsev, E. (2002). Comment on generation of electromagnetic pulses from plasma channels induced by femtosecond light strings. Phys. Rev. Lett. 89, 139301.CrossRefGoogle ScholarPubMed
Silaev, A.A. & Vedenskii, N.V. (2009). Residual-current excitation in plasmas produced by few-cycle laser pulses. Phys. Rev. Lett. 102, 115005.CrossRefGoogle ScholarPubMed
Sprangle, P., Penano, J.R., Hafizi, B. & Kapetanakos, C.A. (2004). Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Phys. Rev. E 69, 066415.CrossRefGoogle ScholarPubMed
Stein, J., Fill, E., Habs, D.Pretzler, G. & Witte, K. (2004). Hot electron diagnostic using X-rays and Cerenkov radiation. Laser Part. Beams 22, 315321.CrossRefGoogle Scholar
Tikhonchuk, V.T. (2002). Comment on generation of electromagnetic pulses from plasma channels induced by femtosecond light strings. Phys. Rev. Lett. 89, 209301.CrossRefGoogle ScholarPubMed
Van Tilborg, J., Schroeder, C.B., Esarey, E. & Leemans, W.P. (2004). Pulse shape and spectrum of coherent diffraction-limited transition radiation from electron beams. Laser Part. Beams 22, 415422.CrossRefGoogle Scholar
Wang, W.-M., Sheng, Z.-M., Wu, H.-C., Chen, M., Li, C., Zhang, J. & Moma, K. (2008). Strong terahertz pulse generation by chirped laser pulses in tenuous gases. Opt. Express 16, 16999.CrossRefGoogle ScholarPubMed
Wu, H.C., Meyer-ter-Vehn, J. & Sheng, Z.-M. (2009). Phase-sensitive terahertz emission from gas targets irradiated by few-cycle laser pulses. New J. Phys. 10, 043001.Google Scholar
Wu, H.C., Sheng, Z.M. & Zhang, J. (2008). Single-cycle powerful megawatt to gigawatt terahertz pulse radiated from a wavelength-scale plasma oscillator. Phys. Rev. E 77, 046405.CrossRefGoogle ScholarPubMed
Xie, X., Dai, J. & Zhang, X.-C. (2006). Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 96, 075005.CrossRefGoogle ScholarPubMed
Zheng, J., Yu, C.X., Zheng, Z.J. & Tanaka, K.A. (2005). Cherenkov radiation generated by a beam of electrons revisited. Phys. Plasmas 12, 093105.CrossRefGoogle Scholar