Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-11T01:13:28.475Z Has data issue: false hasContentIssue false

Advanced concepts and methods for very high intensity accelerators

Published online by Cambridge University Press:  16 October 2014

P.A.P. Nghiem*
Affiliation:
CEA/DSM/IRFU, Centre de Saclay, Gif-sur-Yvette Cedex, France
N. Chauvin
Affiliation:
CEA/DSM/IRFU, Centre de Saclay, Gif-sur-Yvette Cedex, France
M. Comunian
Affiliation:
INFN/LNL, Legnaro (PD), Italy
C. Oliver
Affiliation:
CIEMAT, Madrid, Spain
W. Simeoni Jr.
Affiliation:
Dep. de Engenharia Eletrica, Univ. Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
D. Uriot
Affiliation:
CEA/DSM/IRFU, Centre de Saclay, Gif-sur-Yvette Cedex, France
M. Valette
Affiliation:
CEA/DSM/IRFU, Centre de Saclay, Gif-sur-Yvette Cedex, France
*
Address correspondence and reprint requests to: P. A. P. Nghiem, CEA/DSM/IRFU, Centre de Saclay, 91191 Gif-sur-Yvette Cedex, France. E-mail: phu-anh-phi.nghiem@cea.fr

Abstract

For very high intensity accelerators, not only beam power but also space charge is a concern. Both aspects should be taken into consideration for any analysis of accelerators aiming at comparing their performances and pointing out the challenging sections. As high beam power is an issue from the lowest energy, careful and exhaustive beam loss predictions have to be done. High space charge implies lattice compactness making the implementation of beam diagnostics very problematic, so a clear strategy for beam diagnostic has to be defined. Beam halo is no longer negligible. Its dynamics is different from that of the core and plays a significant role in the particle loss process. Therefore, beam optimization must take the halo into account and beam characterization must be able to describe the halo part in addition to the core one. This paper presents the advanced concepts and methods for beam analysis, beam loss prediction, beam optimization, beam diagnostic, and beam characterization especially dedicated to very high intensity accelerators. Examples of application of these concepts are given in the case of the IFMIF accelerators.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, C.K. & Wangler, T.P. (2002). Beam halo definitions based upon moments of the particle distribution. Phys. Rev. Spec. Accelerators and Beams 5, 12420.Google Scholar
Bangerter, R.O., Faltens, A. & Seidl, P.A. (2013). Accelerators for inertial fusion energy production. Rev. Accel. Sci. Techn. 6, 85116.CrossRefGoogle Scholar
Chauvin, N., Duperrier, R., Mosnier, A., Nghiem, P.A.P. & Uriot, D. (2009). Optimisation results of beam dynamics simulations for the superconducting HWR Linac. Proc. of PAC. Vancouver, BC, Canada.Google Scholar
Chauvin, N., Delferrière, O., Duperrier, R., Gobin, R., Nghiem, P.A.P. & Uriot, D. (2012). Transport of intense ion beams and space charge compensation issues in low energy beam lines. Rev. Sci. Instru. 83, 02B320.CrossRefGoogle ScholarPubMed
Chen, C. & Davidson, R.C. (1994). Nonlinear resonances and chaotic behavior in a periodically focused intense charged-particle beam. Phys. Rev. Lett. 72, 2195.CrossRefGoogle Scholar
Chen, C. & Jameson, R.A. (1994). Self-consistent simulation studies of periodically focused intense charged-particle beams. Phys. Rev. E 52, 3074.CrossRefGoogle Scholar
Duperrier, R., Pichoff, N. & Uriot, D. (2002). CEA Saclay codes review for high intensity linacs computations. Proc. of ICCS, Amsterdam, Netherlands.CrossRefGoogle Scholar
Gluckstern, R.L. (1994). Analytic model for halo formation in high current ion linacs. Phys. Rev. Lett. 73, 1247.CrossRefGoogle ScholarPubMed
Hofmann, I. (2013). Halo coupling and cleaning by a space charge resonance in high intensity beams. Phys. Rev. Spec. Accelerators and Beams 16, 084201.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A.,Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Jeon, D.-O. (2013). Evidence of a halo formation mechanism in the spallation neutron source linac. Phys. Rev. Spec. Accelerators and Beams 16, 040103.Google Scholar
Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. Proc. of IEEE International Conference on Neural Networks 4, 1942–1948.CrossRefGoogle Scholar
Marroncle, J., Abbon, P., Egberts, J. & Pomorski, M. (2011). Micro-loss detector for IFMIF-EVEDA. Proc. of DIPAC11. Hamburg, Germany.Google Scholar
Mokhov, N.V. & Chou, W. (1999). Proc. of 7th ICFA Mini-Workshop on High Intensity High Brightness Hadron Beams. Lake Como, Wisconsin, USA.Google Scholar
Mustafin, E., Boine-Frankenheim, O., Hofmann, I. & Spiller, P. (2002). Beam losses in heavy ion drivers. Laser Part. Beams 20, 637640.CrossRefGoogle Scholar
Nghiem, P.A.P., Chauvin, N., Comunian, M., Delferrière, O., Duperrier, R., Mosnier, A., Oliver, C. & Uriot, D. (2011 a). The IFMIF-EVEDA challenges in beam dynamics and their treatment. Nucl. Instru. Meth. Phys. Res. A 654, 6371.CrossRefGoogle Scholar
Nghiem, P.A.P., Chauvin, N., Counienc, E. & Oliver, C. (2011 b). Studies of emittance measurement by quadrupole variation for the IFMIF-EVEDA high space-charge beam. Proc. of IPAC. San Sebastián, Spain.Google Scholar
Nghiem, P.A.P., Chauvin, N., Comunian, M., Delferrière, O., Duperrier, R., Mosnier, A., Oliver, C., Simeoni, W. Jr. & Uriot, D. (2014 a). Dynamics of the IFMIF very high intensity beam. Laser Part. Beams 32, 109118.CrossRefGoogle Scholar
Nghiem, P.A.P., Chauvin, N., Simeoni, W. Jr. & Uriot, D. (2014 b). Core-halo issues for a very high intensity beam. Appl. Phys. Lett. 104, 074109.CrossRefGoogle Scholar
Nghiem, P.A.P., Chauvin, N., Comunian, M.A., Oliver, C. & Uriot, D. (2014 c). A catalogue of losses for a high power, high intensity accelerator. Laser Part. Beams 32, 461469.CrossRefGoogle Scholar
Nghiem, P.A.P., Valette, M., Chauvin, N., Pichoff, N. & Uriot, D. (2014 d). Core-halo limit: An indicator of high intensity beam internal dynamics. To be published.CrossRefGoogle Scholar
Sugimoto, M. & Takeuchi, H. (2004). Low activation materials applicable to the IFMIF accelerator. J. Nucl. Mater. 329–333, 198201.CrossRefGoogle Scholar
Wangler, T.P. (2008). RF Linear Accelerators. New York: Wiley, 289.CrossRefGoogle Scholar
Wangler, T.P. & Crandall, K.R. (2000). Beam halo in proton linac beams. Proc. of XX International Linac Conference, Monterey, California.Google Scholar
Wei, J., Fischer, W. & Manning, P. (2003). Beam halo dynamics, diagnostics and collimation. Proc. of HALO'03 workshop, vol. 693, AIP.Google Scholar