Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T14:35:46.858Z Has data issue: false hasContentIssue false

Advances in the investigation of shock-induced reflectivity of porous carbon

Published online by Cambridge University Press:  02 July 2013

Dimitri Batani*
Affiliation:
University Bordeaux, CEA, CNRS, CELIA (Centre Laser Intense at Applications), UMR 5107, Talence, France
Stefano Paleari
Affiliation:
Dipartimento di Fisica G.Occhialini, Università di Milano Bicocca, Milan, Italy
Tommaso Vinci
Affiliation:
Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-Ecole Polytechnique-Paris VI, Palaiseau, France
Roberto Benocci
Affiliation:
University Bordeaux, CEA, CNRS, CELIA (Centre Laser Intense at Applications), UMR 5107, Talence, France
Keisuke Shigemori
Affiliation:
Institute of Laser Engineering, Osaka University, Suita City, Osaka, Japan
Yoichiro Hironaka
Affiliation:
Institute of Laser Engineering, Osaka University, Suita City, Osaka, Japan
Toshihiko Kadono
Affiliation:
Institute of Laser Engineering, Osaka University, Suita City, Osaka, Japan
Akiyuki Shiroshita
Affiliation:
Institute of Laser Engineering, Osaka University, Suita City, Osaka, Japan
*
Address correspondence and reprint requests to: Dimitri Batani, Centre Lasers Intenses et Applications, Universit_e Bordeaux 1, Cours de la Liberation 351, 33405 Talence cedex, France. E-mail: batani@celia.u-bordeaux1.fr

Abstract

We studied the behavior of porous carbon compressed by laser-generated shock waves. In particular, we developed a new design for targets, optimized for the investigation of carbon reflectivity at hundred-GPa pressures and eV/k temperatures. Specially designed “two-layer-two materials” targets, comprising porous carbon on transparent substrates, allowed the probing of carbon reflectivity and a quite accurate determination of the position in the P, T plane. This was achieved by the simultaneous measurement of shock breakout times, sample temperature (by optical pyrometry) and uid velocity. The experiments proved the new scheme is reliable and appropriate for reflectivity measurements of thermodynamical states lying out of the standard graphite or diamond hugoniot. An increase of reflectivity in carbon has been observed at 260 GPa and 14,000 K while no increase in reflectivity is found at 200 GPa and 20,000 K. We also discuss the role of numerical simulations in the optimization of target parameters and in clarifying shock dynamics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ancilotto, F., Chiarotti, G. L., Scandolo, S. & Tosatti, E. (1997). Dissociation of methane into hydrocarbons at extreme (planetary) pressure and temperature. Sci. 275, 12881290.CrossRefGoogle ScholarPubMed
Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127141.CrossRefGoogle Scholar
Batani, D., Stabile, H., Ravasio, A., Lucchini, G., Strati, F., Ullschmied, J., Krousky, E., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Präg, A., Nishimura, H., Ochi, Y., Kilpio, A., Shashkov, E., Stuchebrukhov, I., V, V. & I, K. (2003). Shock pressure induced by 0.44 µm laser radiation on aluminum targets. Laser Part. Beams 21, 481487.CrossRefGoogle Scholar
Batani, D., Strati, F., Stabile, H., Tomasini, M., Lucchini, G., Ravasio, A., Koenig, M., Benuzzi-Mounaix, A., Nishimura, H., Ochi, Y., Ullschmied, J., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Präg, A., Hall, T., Milani, P., Barborini, E. & Piseri, P. (2004). Hugoniot data for carbon at megabar pressures. Phys. Rev. Lett. 92, 065503.CrossRefGoogle ScholarPubMed
Biener, J., Ho, D. D., Wild, C., Woerner, E., Biener, M. M., El-dasher, B. S., Hicks, D. G., Eggert, J. H., Celliers, P. M., Collins, G. W., Teslich, N.E. J., Kozioziemski, B. J., Haan, S. W. & Hamza, A. V. (2009). Diamond spheres for inertial confinement fusion. Nucl. Fusion 49, 112001.CrossRefGoogle Scholar
Bradley, D. K., Eggert, J. H., Smith, R. F., Prisbrey, S. T., Hicks, D. G., Braun, D. G., Biener, J., Hamza, A. V., Rudd, R. E. & Collins, G. W. (2009). Diamond at 800 GPa. Phys. Rev. Lett. 102, 075503.CrossRefGoogle ScholarPubMed
Bundy, F., Bassett, W., Weathers, M., Hemley, R., Mao, H. & Goncharov, A. (1996). The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141153.CrossRefGoogle Scholar
Clérouin, J., Laudernet, Y., Recoules, V. & Mazevet, S. (2006). Ab initio study of optical properties of shock compressed silica and lithium fluoride. J. Phys. A 39, 43874391.CrossRefGoogle Scholar
Correa, A. A., Bonev, S. A. & Galli, G. (2006). Carbon under extreme conditions: Phase boundaries and electronic properties from _rst-principles theory. Proceedings of the Shock-induced carbon reflectivity National Academy of Sciences of the United States of America 103, 1204{1208.CrossRefGoogle Scholar
Das, M. & Menon, S. (2009). Effects of bound electrons and radiation on shock Hugoniot. Phys. Rev. B 79, 045126.CrossRefGoogle Scholar
Driver, K. & Militzer, B. (2012). All-Electron Path Integral Monte Carlo Simulations of Warm Dense Matter: Application to Water and Carbon Plasmas. Phys. Rev. Lett. 108, 115502.CrossRefGoogle ScholarPubMed
Eggert, J. H., Hicks, D. G., Celliers, P. M., Bradley, D. K., McWilliams, R. S., Jeanloz, R., Miller, J. E., Boehly, T. R. & Collins, G. W. (2009). Melting temperature of diamond at ultrahigh pressure. Nat. Phys. 6, 4043.CrossRefGoogle Scholar
Fujioka, S., Zhang, Z., Yamamoto, N., Ohira, S., Fujii, Y., Ishihara, K., Johzaki, T., Sunahara, A., Arikawa, Y., Shigemori, K., Hironaka, Y., Sakawa, Y., Nakata, Y., Kawanaka, J., Nagatomo, H., Shiraga, H., Miyanaga, N., Norimatsu, T., Nishimura, H. & Azechi, H. (2012). High-energy-density plasmas generation on GEKKO-LFEX laser facility for fast-ignition laser fusion studies and laboratory astrophysics. Plasma Phys. Control. Fusion 54, 124042.CrossRefGoogle Scholar
Grumbach, M. & Martin, R. (1996). Phase diagram of carbon at high pressures and temperatures. Phys. Rev. B 54, 1573015741.CrossRefGoogle ScholarPubMed
Guillot, T. (1999). Interiors of Giant Planets Inside and Outside the Solar System. Sci. 286, 7277.CrossRefGoogle ScholarPubMed
Gust, W. (1980). Phase transition and shock-compression parameters to 120 GPa for three types of graphite and for amorphous carbon. Phys. Rev. B 22, 47444756.CrossRefGoogle Scholar
Hicks, D. G., Boehly, T. R., Celliers, P. M., Bradley, D. K., Eggert, J. H., McWilliams, R. S., Jeanloz, R. & Collins, G. W. (2008). High-precision measurements of the diamond Hugoniot in and above the melt region. Phys. Rev. B 78, 174102.CrossRefGoogle Scholar
Hicks, D. G., Boehly, T. R., Celliers, P. M., Eggert, J. H., Vianello, E., Meyerhofer, D. D. & Collins, G. W. (2005). Shock compression of quartz in the high-pressure fluid regime. Phys. Plasmas 12, 082702.CrossRefGoogle Scholar
Kemp, A. J. & Meyer-ter Vehn, J. (1998). An equation of state code for hot dense matter, based on the QEOS description. Nucl. Instr. Meth. Phys. Res. A 415, 674676.CrossRefGoogle Scholar
LA-UR-92-3407 (1992). Sesame: The lanl equation of state database. Los Alamos: Los Alamos National Laboratory.Google Scholar
Milani, P., Piseri, P., Barborini, E., Podesta, A. & Lenardi, C. (2001). Cluster beam synthesis of nanostructured thin films. J. Vacu. Sci. & Techn. A 19, 20252033.CrossRefGoogle Scholar
Miyanaga, N., Nakatsuka, M., Azechi, H., Shiraga, H., Kanabe, T., Asahara, H., Daido, H., Fujita, H. & Fujita, K. (2001). The GEKKO XII-HIPER (High Intensity Plasma Experimental Research) System Relevant to Ignition Targets. 18th IAEA International Conference on Fusion Energy. Sorrento, Italy.Google Scholar
More, R. M., Warren, K. H., Young, D. A. & Zimmerman, G. B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 30593078.CrossRefGoogle Scholar
Nellis, W., Ross, M. & Holmes, N. (1995). Temperature measurements of shock-compressed liquid hydrogen: Implications for the interior of Jupiter. Sci. 574, 12491252.CrossRefGoogle Scholar
Nissim, N., Eliezer, S., Werdiger, M. & Perelmutter, L. (2012). Approaching the cold curve in laser-driven shock wave experiment of a matter precompressed by a partially perforated diamond anvil. Laser Part. Beams XX, 17.Google Scholar
Ozaki, N., Tanaka, K. A., Ono, T., Shigemori, K., Nakai, M., Azechi, H., Yamanaka, T., Wakabayashi, K., Yoshida, M., Nagao, H. & Kondo, K. (2004). GEKKO/HIPER-driven shock waves and equation-of-state measurements at ultrahigh pressures. Phys. Plasmas 11, 16001608.CrossRefGoogle Scholar
Paleari, S., Batani, D., Vinci, T, Benocci, R., Shigemori, K., Hironaka, Y., Kadono, T., Shiroshita, A., Piseri, P., Bellucci, S., Mangione, A. & Aliverdiev, A. (2013). A new target design for laser shock-compression studies of carbon reflectivity in the megabar regime. Euro. Phys. J. D (in press).CrossRefGoogle Scholar
Ramis, R., Schmalz, R. & Meyer-Ter-Vehn, J. (1988). MULTI - A computer code for one-dimensional multigroup radiation hydrodynamics. Compu. Phys. Commun. 49, 475505.CrossRefGoogle Scholar
Romero, N. & Mattson, W. (2007). Density-functional calculation of the shock Hugoniot for diamond. Phys. Rev. B 76, 214113.CrossRefGoogle Scholar
Ross, M. (1981). The ice layer in Uranus and Neptune—diamonds in the sky? Nat. 292, 435436.CrossRefGoogle Scholar
Setchell, R. E. (2002). Refractive index of sapphire at 532 nm under shock compression and release. J. Appl. Phys. 91, 28332841.CrossRefGoogle Scholar
Shigemori, K., Otani, K., Shiota, T., Azechi, H. & Mima, K. (2006). Shock pyrometry of laser-irradiated foils below 1 eV. Jpn J. Appl. Phys. 45, 42244226.CrossRefGoogle Scholar
Thiel, M. V. & Ree, F. (1993). High-pressure liquid-liquid phase change in carbon. Phys. Rev. B 48, 35913599.CrossRefGoogle Scholar
Togaya, M. (1997). Pressure dependences of the melting temperature of graphite and the electrical resistivity of liquid carbon. Phys. Rev. Lett. 79, 24742477.CrossRefGoogle Scholar
Tomasini, M. (2001). Studio dell'equazione di stato del ferro e del carbonio a pressioni dell'ordine dei Mbar generate da shock indotti da laser (English translation here). Master's thesis, Universitaé degliStudi di Milano.Google Scholar
Wang, Y., Liu, Z.-K., Chen, L.-Q., Burakovsky, L., Preston, D., Luo, W., Johansson, B. & Ahuja, R. (2005). Mean-field potential calculations of shock-compressed porous carbon. Phys. Rev. B 71, 054110.Google Scholar
Wang, X., Scandolo, S., Car, R., Burakovsky, L., Preston, D., Luo, W., Johansson, B. & Ahuja, R. (2005). Carbon phase diagram from ab initio molecular dynamics. Phys. Rev. Lett. 95, 185701.CrossRefGoogle ScholarPubMed
Yamanaka, C. (1999). Inertial fusion research over the past 30 years. Fusion Engin. Des. 44, 112.CrossRefGoogle Scholar
Zvorykin, V., Bakaev, V., Lebo, I. & Sychugov, G. (2004). Hydrodynamics of plasma and shock waves generated by the high-power GARPUN KrF laser. Laser Part. Beams 22, 5157.CrossRefGoogle Scholar