Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T10:34:12.017Z Has data issue: false hasContentIssue false

An overview of Aurora: a multi-kilojoule KrF laser system for inertial confinement fusion

Published online by Cambridge University Press:  09 March 2009

Louis A. Rosocha
Affiliation:
University of California, Los Alamos National Laboratory, Physics Divison, PO Box 1663, MS-E548, Los Alamos, NM 87545
Pleas S. Bowling
Affiliation:
University of California, Los Alamos National Laboratory, Physics Divison, PO Box 1663, MS-E548, Los Alamos, NM 87545
Michael D. Burrows
Affiliation:
University of California, Los Alamos National Laboratory, Physics Divison, PO Box 1663, MS-E548, Los Alamos, NM 87545
Michael Kang
Affiliation:
University of California, Los Alamos National Laboratory, Physics Divison, PO Box 1663, MS-E548, Los Alamos, NM 87545
John Hanlon
Affiliation:
University of California, Los Alamos National Laboratory, Physics Divison, PO Box 1663, MS-E548, Los Alamos, NM 87545
John McLeod
Affiliation:
University of California, Los Alamos National Laboratory, Physics Divison, PO Box 1663, MS-E548, Los Alamos, NM 87545
George W. York Jr.
Affiliation:
University of California, Los Alamos National Laboratory, Physics Divison, PO Box 1663, MS-E548, Los Alamos, NM 87545

Abstract

Aurora is a short-pulse high-power krypton-fluoride laser system that serves as an end-to-end technology demonstration prototype for large-scale ultraviolet laser systems of interest for short wavelength inertial confinement fusion (ICF) studies. The system is designed to employ optical angular multiplexing and serial amplification by electron-beam-driven KrF laser amplifiers to deliver 248 nm, 5-ns duration multi-kilojoule laser pulses to ICF targets using a beam train of approximately 1 km in length.

In this paper, we will discuss the goals for the system and summarize the design features of the major system components: front-end lasers, amplifier train, optical train, and the alignment and controls systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ewing, J. J., Hass, R. A., Swingle, J. C., George, E. V. & Krupke, W. F. 1978 IEEE J. Quantum Electron. QE-15, 368.Google Scholar
Gibson, A. F. 1982 Contemp. Phys. 23, 285.CrossRefGoogle Scholar
Hanlon, J., McLeod, J., Sollid, J., Horn, W. III, Carmichael, R., Kortegaard, B. L., Woodfin, G. & Rosocha, L. A. 1985 “The Aurora Project: Optical Design for a Kilojoule Class KrF Laser”,Southwest Conference on Optics, March, 1985 (to be published in Proceedings of the SPIE).CrossRefGoogle Scholar
Harris, D. B. & Pendergrass, J. H. 1985 “Megajoule-Class Single-Pulse KrF Laser Test Facility as a Logical Step Toward Inertial Confinement Fusion”(to be published in Fusion Technology Vol. 7, July, 1985).CrossRefGoogle Scholar
Hunter, A. M. II. & Hunter, R. O. Jr. 1981 IEEE J. Quantum Electron. QE-17, 1879.Google Scholar
Kortegaard, B. L. 1985 “Superfine Laser Position Control Using Statistically Enhanced Resolution in Real Time”, Los Angeles Technical Symposium on Optical and Electro-Optical Engineering Jan., 1985 (to be published in the proceedings).CrossRefGoogle Scholar
Lowenthal, D. D., Ewing, J. J., Center, R. E., Mumola, P. B., Grossman, W. M., Olson, N. T. & Shannon, J. P. 1981 IEEE J. Quantum Electron. QE–17, 1861.Google Scholar
Riepe, K. B., Barrone, L. L., Bickford, K. J. & Livermore, G. H. 1981Antares Prototype 300-kj, 250-kA Marx Generator”, Los Alamos National Laboratory Report LA-8491, Jan., 1981.Google Scholar
Rosocha, L. A., Kang, M., Romero, V. O., Van Haaften, F. W. & Brucker, J. P. 1985 “Design and Performance of Large Area Monolithic Electron Guns for the Aurora KrF Laser System”,5th IEEE Pulsed Power Conference,June, 1985.Google Scholar
Salesky, E. T. & Kimura, W. D., 1984, (submitted for publication to IEEE J. Quantum Electron., Dec, 1984).Google Scholar
Sullivan, J. A. & Von Rosenberg, C. W. Jr. 1985 Digest of Technical Papers, CLEO '85, May, 1985, 188 (submitted for publication this journal).Google Scholar
York, G. W. Jr., Czuchlewski, S. J., Rosocha, L. A. & Salesky, E. T. 1985 Digest of Technical Papers, CLEO '85, May, 1985 (submitted for publication this journal).Google Scholar
Ze, F., Suter, L. J., Lane, S. M., Campbell, E. M., Lindl, J. D., Rosen, M. D., Phillion, D. W., Hatcher, C. W., Drake, R. P., Hildum, J. S. & Manes, K. R. 1984 LL/Report UCRL-91087 (Submitted to Phys. Rev. Letters June, 1984).Google Scholar